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Abstract

The field of text-to-3D generative methods has seen remark-001
able progress in recent times, driven by a series of break-002
throughs. Despite this progress, the existing evaluation met-003
rics often focus on a single criterion, such as the alignment004
between the input text and the generated 3D models, but005
they do not comprehensively evaluate the quality of the gen-006
erated 3D model itself. Traditional methods for evaluat-007
ing 3D models typically measure the distance between gen-008
erated and reference shape distributions. However, these009
methods are not readily applicable to text-conditioned gen-010
erative tasks due to the difficulty in obtaining a comprehen-011
sive reference set, given the vast range of natural language012
inputs. In this work, we propose a novel approach to evalu-013
ate the visual perception of generated 3D models using sur-014
face normal and visual feature analysis. Surface normals015
provide crucial information about the geometry of a sur-016
face, describing aspects such as surface orientation, curva-017
ture, and shape. Visual features provide a comprehensive018
understanding of the image’s content and context.019

†020

1. Introduction021

Based on the recent traction in the area of Text-to-3D022
models, there have also been many methods introduced023
to evaluate the generated 3D models based on the input024
query. These evaluation methods check againt the fidelity025
of 3D model based on the text input GPT-4V(ision)[11],026
T3Bench[3], To evaluate the geometric consistency of the027
generated 3D models, we use surface normal analysis as028
a key metric. First, we generate 3D models from text in-029
puts using a state-of-the-art text-to-3D model, represented030
as triangular meshes. Surface normals are then computed031
directly from the mesh geometry, serving as ground truth032
for comparison. To analyze the models from different033
perspectives, we capture 2D images from both canonical034
(e.g., front, side) and non-canonical (e.g., oblique, tilted)035
viewing angles. For surface normal prediction, we utilize036
StableNormal[12], a robust model designed to predict sur-037

face normals from images under complex lighting and geo- 038
metric conditions. The predicted normals from StableNor- 039
mal are compared with the mesh-derived normals using co- 040
sine difference as the primary metric, which measures the 041
angular discrepancy between the two sets of normals. To 042
ensure that only valid regions of the model are evaluated, 043
a masking procedure is applied to exclude irrelevant pix- 044
els from the background. This approach allows us to as- 045
sess the geometric fidelity of the 3D models across multiple 046
views and varying levels of complexity, providing insight 047
into the performance of text-to-3D generative models. We 048
have also taken inspiration from text-to-Image evaluation 049
methods [5], text-to-3DModel evaluation methods [7], [2]. 050

2. Methodology 051

Our proposed methodology evaluates the fidelity of 3D sur- 052
face reconstruction by combining quantitative metrics with 053
qualitative visualizations. The framework begins with mesh 054
preprocessing, where vertex and face data are extracted, fol- 055
lowed by the projection of image-based features onto the 056
mesh. Normal maps generated by the model are compared 057
with ground truth using multiple evaluation metrics. Cosine 058
similarity is computed for pixel-wise normal vector align- 059
ment, capturing directional differences, while the struc- 060
tural similarity index (SSIM) quantifies perceptual similari- 061
ties. Additionally, learned perceptual image patch similarity 062
(LPIPS)[13] is employed to measure perceptual fidelity us- 063
ing pre-trained neural networks such as AlexNet and VGG. 064
We also consider using a more recent method[4] to com- 065
pute FID score used specifically for Image generation.To 066
enhance evaluation reliability, masked regions are incorpo- 067
rated, focusing computations only on valid, unoccluded ar- 068
eas of the normal maps. The variance of surface features, 069
such as mean, standard deviation, and variance, is quan- 070
tified and visualized on the 3D mesh using Open3D, pro- 071
viding insights into spatial feature distribution. Heatmaps 072
visualize cosine similarity and SSIM metrics, while sta- 073
tistical summaries, including variance statistics, are gener- 074
ated. The implementation integrates Python libraries like 075
PyTorch, Scikit-image, and Matplotlib for metric computa- 076
tions and visualizations, ensuring an efficient pipeline for 077
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comprehensive evaluation. This multi-faceted approach en-078
ables a robust analysis of reconstructed surfaces, blending079
traditional image-level metrics with 3D geometric insights080
to support meaningful comparisons and advancements in081
3D reconstruction techniques. While new Gaussian Splat-082
ting methods like LGM[9], DreamBeast[6], we evaluate the083
3D models generated by ProlificDreamer[10]. We evalu-084
ate the prompt ”A 3D model of an adorable cottage with a085
thatched roof”086

2.1. Texture Feature point Analysis087

Texture Feature Point Analysis Texture feature point anal-088
ysis is a key part of evaluating the spatial distribution and089
consistency of features across the reconstructed 3D surface.090
This analysis focuses on projecting image-based DINO-091
V2[8] features onto the mesh and quantifying their variance,092
standard deviation, and mean to capture feature stability and093
alignment. The process enables a deeper understanding of094
the texture fidelity in the reconstructed model, highlighting095
areas where feature representations may vary significantly096
across different views or reconstructions.097

Feature Projection and Mapping Feature extraction098
begins by identifying and projecting relevant texture points099
from input images onto the corresponding 3D mesh ver-100
tices. These features, derived from image patches, are101
mapped to the closest vertices using a KD-tree-based near-102
est neighbor search, which efficiently matches 2D image103
locations to 3D surface points. Each vertex is then assigned104
a feature vector, allowing a consistent texture representation105
across the surface.106

Variance and Consistency Quantification For each107
feature point on the mesh, the variance, standard deviation,108
and mean of feature values across different views are com-109
puted. These metrics are used to assess the consistency of110
the features, indicating the stability and reliability of texture111
information for each vertex. High variance suggest areas112
where feature points lack stability, potentially due to occlu-113
sions or inconsistent texture mapping across images, while114
lower variance reflects a stable and uniform feature repre-115
sentation.116

Visualization of Feature Variance To provide a spatial117
understanding of feature consistency, variance values are vi-118
sualized directly on the 3D mesh. Each vertex is colored119
based on its variance, creating a visual map of texture sta-120
bility across the surface. High-variance regions are high-121
lighted to indicate areas with potential instability in texture122
representation, while low-variance regions show where tex-123
ture mapping is consistent and reliable. This visualization124
is saved as a 3D .obj file, allowing easy inspection. Figure125
of variance is shown in image 3126

Interpretation and Use Texture feature point analysis127
offers insights into the spatial consistency of textures on128
3D surfaces, highlighting potential areas of improvement129

Figure 1. Left: shows the mean DINO-v2 features, Right: shows
the standard deviation of the features.

in texture mapping and feature alignment. By integrating 130
variance visualization and statistical reporting, this analysis 131
serves as a robust tool for evaluating texture fidelity, en- 132
abling model developers to refine their approaches and en- 133
hance the visual realism of reconstructed surfaces. 134

2.2. Surface Normal Analysis 135

To evaluate the geometric consistency of the generated 3D 136
models, we use surface normal analysis as a key metric. 137
First, we generate 3D models from text inputs using a 138
state-of-the-art text-to-3D model, represented as triangular 139
meshes. Surface normals are then computed directly from 140
the mesh geometry, serving as ground truth for comparison. 141
To analyze the models from different perspectives, we cap- 142
ture 2D images from both canonical (e.g., front, side) and 143
non-canonical (e.g., oblique, tilted) viewing angles. For sur- 144
face normal prediction, we utilize StableNormal[12], a ro- 145
bust model designed to predict surface normals from images 146
under complex lighting and geometric conditions. The pre- 147
dicted normals from StableNormal are compared with the 148
mesh-derived normals using cosine difference as the pri- 149
mary metric, which measures the angular discrepancy be- 150
tween the two sets of normals. To ensure that only valid 151
regions of the model are evaluated, a masking procedure is 152
applied to exclude irrelevant pixels from the background. 153
This approach allows us to assess the geometric fidelity of 154
the 3D models across multiple views and varying levels of 155
complexity, providing insight into the performance of text- 156
to-3D generative models. We also considered to process the 157
normal maps into 3D object inspired form [1]. 158

The analysis of surface normals is a critical component 159
of the proposed methodology, aiming to assess the accu- 160
racy and perceptual fidelity of reconstructed 3D surfaces. 161
This process evaluates the alignment and similarity of nor- 162
mal maps generated by the reconstruction model against 163
ground-truth normal maps using three complementary ap- 164
proaches: cosine similarity, structural similarity (SSIM), 165
and learned perceptual image patch similarity (LPIPS). 166

Cosine Similarity Cosine similarity is employed to 167
measure the directional alignment of surface normals on a 168
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per-pixel basis. Normal maps are first normalized to unit169
vectors, ensuring consistent magnitude across all normal170
vectors. The cosine similarity is then computed as the dot171
product of corresponding vectors, providing a scalar value172
between -1 and 1, where 1 indicates perfect alignment. The173
methodology further aggregates these values to compute av-174
erage, variance, and median cosine similarity scores, en-175
abling quantitative comparisons of directional accuracy.176

Structural Similarity (SSIM) SSIM is used to evalu-177
ate the perceptual similarity between the reconstructed and178
ground-truth normal maps. By comparing luminance, con-179
trast, and structural information, SSIM captures differences180
that are more aligned with human visual perception. This181
metric is computed pixel-wise across the entire normal map182
and visualized as a difference heatmap, highlighting areas183
with significant deviations.184

Learned Perceptual Image Patch Similarity (LPIPS)185
LPIPS evaluates the perceptual quality of reconstructed nor-186
mals using deep learning-based feature representations. By187
leveraging pre-trained networks such as AlexNet and VGG,188
LPIPS captures high-level perceptual differences that go be-189
yond simple pixel-wise comparisons. The normal maps are190
resized and normalized to ensure compatibility with the net-191
work, and the LPIPS distance is computed for each pair of192
normal maps.193

Mask Integration To ensure the robustness of the anal-194
ysis, a mask is applied to exclude invalid or occluded re-195
gions of the normal maps. This focuses the evaluation on196
relevant areas, preventing noisy or undefined regions from197
skewing the results.198

Visualization and Outputs The results of surface nor-199
mal analysis are visualized through heatmaps that represent200
cosine similarity and SSIM metrics. These heatmaps pro-201
vide an intuitive understanding of normal alignment and202
perceptual fidelity across the surface. Additionally, statisti-203
cal metrics, including the mean and variance of cosine sim-204
ilarity and SSIM, are summarized in CSV files for quantita-205
tive comparison. The visualization of discrepancy in texture206
is shown in 2207

This comprehensive analysis of surface normals enables208
a detailed assessment of reconstruction accuracy, combin-209
ing traditional geometric alignment metrics with advanced210
perceptual measures. The integration of visualization and211
statistical reporting further facilitates a deeper understand-212
ing of model performance and areas for improvement.213

3. Results214

3.1. Surface Normal Analysis215

Our results on evaluating 20 3D models generated by 5216
generative models, including the most recent work Prolific-217
dreamer, plot shown in Figure 4, show that canonical views218
(Rear and Side Left), demonstrated high geometric con-219

Figure 2. Shows mismatch in normals of the geometry and the
texture. Left: Generated 3D model. Middle: 3D model’s normal.
Right: Normals generated using StableNormals using the Left im-
age.

Figure 3. Left: Generated 3D model. Middle: 3D model’s normal.
Right: SSIM of the Normals image

Figure 4. Plot of mean cosine differences of Surface Normal Anal-
ysis of 20 models, across various camera views.

sistency, with the highest mean cosine difference reaching 220
0.93, indicating strong alignment between the predicted and 221
ground truth surface normals. In contrast, non-canonical 222
views (Side View from Non-Right Angles, Bottom-Up, and 223
Top-Down), showed comparatively lower consistency, with 224
the lowest mean cosine difference being 0.88. Although 225
these non-canonical views also displayed relatively good 226
consistency, these findings emphasize the importance of fo- 227
cusing on non-canonical views to enhance the overall geo- 228
metric fidelity of text-to-3D generative models. 229
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