
Anurag Busha-119193235
Neharidha Murali - 118552804
Samridha Murali - 118551449

Rootkits

2

What is a rootkit?
A rootkit is a set of code that allows someone to control some
aspects of an operating system without revealing its presence.
Fundamentally, that’s what makes a rootkit-evasion of end user
knowledge.

Put in simple words, a rootkit is a “kit” that allows users to maintain
“root” access.

How do rootkits work?
● Rootkits gain control of a system by infecting the operating system, enabling them to operate

undetected and manipulate the system's behavior.

● Kernel space vs. user space: Rootkits operate in the kernel space of the operating system, which is

the most privileged level of operation. This allows them to bypass security measures and evade

detection by security software that operates in user space.

● Rootkits use a variety of techniques to conceal their presence and activities on a compromised

system, including hooking, direct kernel object manipulation, memory patching.

3

Hooking
● Hooking is the process of intercepting and modifying system calls or other low-level functions in the

operating system.

● Rootkits use hooking to intercept and modify system calls that could reveal their presence, such as

calls to the file system or network stack.

Normal execution vs Hooked execution 4

Direct Kernel Object Manipulation
● Direct kernel object manipulation is the process of modifying kernel data structures directly,

without using system calls or other high-level interfaces.

● Rootkits use direct kernel object manipulation to modify data structures that could reveal their

presence or activities on a compromised system, such as the process list or the system call table.

5

Kernel Memory Patching
● Patching is the process of modifying system code or data structures to change their behavior.

● Rootkits use patching to modify kernel code or data structures to conceal their presence or

activities on a compromised system.

6

KLD framework
● One of the major ways rootkits are created for the FreeBSD operating system is through the use of

the KLD (Kernel Loadable Modules) framework.

● This framework allows developers to write kernel code that can be loaded and unloaded

dynamically, without requiring a reboot of the system.

● This makes it an ideal tool for creating rootkits, as it allows the rootkit to modify the kernel without

leaving any traces on the disk.

7

KLD and kernel hacking
● KLD provides a powerful mechanism for loading and unloading kernel modules at runtime, which

can be exploited by attackers to load malicious code into the kernel and hide it from detection.

● The KLD framework can be used for kernel hacking by intercepting system calls and modifying their

behavior.

● This can be done by creating a KLD that contains a custom implementation of a system call, or by

hooking into an existing system call and modifying its behavior

8

Here is a simple module to print out “Hello,

world!” when it is loaded and “Good-bye,

cruel world!” when it is unloaded.

Now that our kernel module is ready, we

need to compile it and link it.

9

As we can see from the above output, we can see our print statements while loading and unloading the

modules.

10

Hooking a system call in FreeBSD
● In the previous slides we have seen a simple program that prints some statements while loading and

unloading a module.

● Now let’s get into some real kernel exploits.

● For this exploit, we are going to build our own custom mkdir module and use it as a hook for the

actual mkdir system call.

● In this example we just print out some statements showing that the mkdir sys_call is modified.

11

System_call Module in FreeBSD
● System call module contains 3 items

○ System call Function

○ Sysent structure

○ Offset value

● The system call function implements the system call

● Sysent structures are placed in system call table.

● Whenever a system call is installed, it’s sysent structure is placed within sysent[]

● Offset value is a unique integer that is assigned to each system call.

12

Let’s dive into the code!

13

Our custom syscall
for mkdir

Call to real mkdir

14

The address of SYS_mkdir
is being replaced with the
address of out
mkdir_hook function

Changing things back
to the way they were.

15

Let’s compile and load

16

What happens when we run
mkdir now?

17

Let’s go over another example
This time let’s do something more cool. Let’s capture the keystrokes of a User.

18

19

20

21

https://docs.google.com/file/d/1cRHIP6dDgv8jz1WPYgWuuaI_XrTmdv3_/preview

Hooking system call in
Ubuntu

22

Kill system call
Hooking syscall

23

Let’s dive into the code!

24

Hooking syscall

25

STRIDE analysis
Spoofing The rootkit could spoof legitimate system components and processes, such as the kernel, system calls, or system utilities, in

order to evade detection and gain access to the system.

Tampering The rootkit could tamper with system components and processes to modify their behavior or functionality. For example, it could

modify the behavior of system calls or replace legitimate system utilities with malicious ones.

Repudiation The rootkit could potentially allow an attacker to perform actions on a system without leaving any evidence of their presence.

This could include modifying system logs or hiding network traffic.

Information
Disclosure

The rootkit could steal sensitive information from the system, such as passwords, private keys, or user data. It could also

intercept network traffic and capture sensitive data in transit.

Denial of Service: The rootkit could potentially be used to launch denial-of-service (DoS) attacks against the system or other systems on the

network. This could be achieved by consuming system resources, interrupting network traffic, or disrupting system processes.

Elevation of Privilege: The rootkit could allow an attacker to gain elevated privileges on the system, such as root access. This could enable the attacker

to perform any action on the system, including installing further malware, stealing data, or launching further attacks.

26

● Operating system hardening
● Code and Memory integrity check
● Using anti-rootkit software - rkhunter, chkrootkit
● Implementing system call filtering - SELinux
● Code signing
● Deploy intrusion detection and prevention systems

Mitigation

27

28

Conclusion
Rootkits are dangerous as they can
hide their presence and causes great
risk to OS.

By implementing multi-layered
security approach impact of rootkit
can be reduced.

Most of our work
was based on this
book.

Kong Joseph. Designing BSD
for rootkits, 2007 29

References:

● Kong Joseph. Designing BSD for rootkits, 2007.
● “Linux LKM Rootkit Tutorial | Linux Kernel Module Rootkit | Part 1.” YouTube, YouTube, 12

Mar. 2021,
https://www.youtube.com/watch?v=hsk450he7nI&list=PLrdeBRwgL0TrjHL0iHqR
JD8Pz9t9FECHy&index=2. Accessed 7 May 2023.

30

Thank you!!

Questions?
Comments?

31

