ENPM664 Final Report

Team Members:
Brandon Perkins
Steve Routh
Samridha Murali
Sumanth Thyagarajan
Michael Lindsey

05/10/2022

Table of Contents

Executive Summary

The Team

Related Works and Background
Project Description

Project Results
Hardware Analysis
Physical disassembly
Component Identification and Analysis
Primary Board Analysis
Ingenic T31 SoC
XBurst1
Secondary Board Analysis
UART Access
Analysis of the U-boot Output
Hardware Emulation
Linux Kernel Static Source Code Analysis
Firmware Analysis
iCamera Analysis
Network Function Calls
Buffer Overflow
File Access
System
Notable Findings
Firmware Visual Analysis
Binwalk - Entropy
Pixd
Port Scanning using nmap
Binary Analysis of jz_fw.bin

Conclusions

References

0 oo g A WO DN

© O NNNNNNOOOOARNWN= = 2
O oo hANINGTOWLWO O oo =~

o O
W =

Executive Summary

Home security has always been a necessity and with the continuing advancement in technology,
home security devices from companies like Ring and Nest have become available to
homeowners. Unfortunately, these products are usually very expensive and many people look
for cheaper alternatives. These alternative devices may be conveniently cheaper and appear to
offer a similar level of service compared to name brand devices, but they are what customers
pay for and are not usually designed with protecting the devices in mind. They tend to have
vulnerabilities that can be exploited, creating an easy attack vector for attackers.

One such device is the Wyze Cam security camera. This device is well known for its
“hackability”, as there are documented techniques, including tutorials, on how to download and
modify the firmware. The team’s objective is to perform a firmware analysis on the device
firmware to identify the software components and potential vulnerabilities that could be
exploited. The team will then provide a write up documenting our findings, including description
of the vulnerabilities, how they could be exploited, and what they would allow an adversary to do
with the device.

The Team

Brandon Perkins

| graduated from Virginia Commonwealth University in 2015 with a Bachelor’s degree in
Computer Science and have been working in software development and testing focused in
cyber security for 7 years now. | have 12 years of experience in linux (7 professional years), 10
years of python experience (7 years professional), and about 4 years of experience in C/C++.

Steve Routh

| currently work for Johns Hopkins University Applied Physics Laboratory (JHU-APL) in Laurel
Maryland as a Systems Engineer. Prior to working for JHU-APL, | performed system- and
component-level design, integration, testing, and troubleshooting of hardware and software on
Naval air and surface platforms. My undergraduate degree is in Electrical and Computer
Engineering from Drexel University. | have experience with C, Linux, Python, and Assembly.

Samridha Murali

| graduated with a Bachelor’s of Technology in Computer science and Engineering from Manipal
Academy of Higher Education with a minor in Network and Security in 2021. | have worked in
industry as a software development intern and Software reliability engineer intern. | am
proficient in Linux, Python, C, Social engineering.

Sumanth Thyagarajan
| graduated with a Bachelor’s of Technology in Computer science and Engineering from

SASTRA University, India, in 2018. | have 3 years of experience in cybersecurity as an Identity
and Access Management - Software developer. | have sufficient experience with Linux, C, Java,
and python.

Michael Lindsey
| graduated with a Bachelor’s in Computer Science and a minor in Cybersecurity from the

University of Maryland in 2021. | have worked in the industry as a software developer intern and
a security engineer intern. | have sufficient experience with Linux, C, and Python. My
cybersecurity area of interest is binary exploitation.

Team Collaboration
For communication we will be using a combination of Zoom and Signal. Report collaboration will
be done over Google Docs.

Related Works and Background

The Wyze camera is marketed as a security camera. It records video and sound, which may be
uploaded to cloud storage and playback service. The device has a built-in speaker and
microphone for 2-way communication, WiFi adapter, color night vision, and is compatible with
iPhone and Android devices [1].

Wyze has more than 1 million users. Communications requests between mobile devices, Wyze
products and AWS are made via https. Each handshake is validated by the camera's own secret
key and certificate [2]. Wyze uses AES 128-bit encryption to protect confidentiality of the live
stream and playback data. Wyze uses Two-factor authentication to secure accounts, with
secondary authentication token or code.

There have been many documented exploits and firmware hijacking attacks performed on the
Wyze Cam. Most of the existing attacks and POCs on the Wyze camera focuses on feature
unlocking, theft of services, performing Man in the Middle attack [3], and starting new services
on the device [4]. The security researchers and firmware developers were able to enable telnet,
redirect logs and recordings to NFS, enable RTSP for live streaming , and archive recording [5]

[6] [71.

Wyze Cam V3 had an Authentication bypass vulnerability (CVE-2019-9564) [8] and a Remote
control execution flaw caused by a stack-based buffer overflow (CVE-2019-12266) [9]
vulnerabilities before v4.36.8.32. When these two vulnerabilities are used in combination,
malicious actors can gain remote access to the camera's video feed [10]. On March 17, 2022, a
new patch with security improvements was released for Wyze Cam V3 [11].

For remote authentication, the client that needs to be authenticated should send an Input/Output
Control (I0Ctl) command with ID 0x2710 to the device. To that, the device generates a random
value and encrypts it with a 16-byte “enr” (AES encryption key), and sends it to the client. Since
the “enr” (key) is known to the client, it decrypts it and sends the decrypted value back to the
device in an I0Ctl command with ID 0x2712. If the value matches, the client is authenticated.
According to a whitepaper published by BitDefender, when the client sends the 0x2710
command, the device stores the generated random value in memory. When the 0x2710
command is not sent the memory remains NULL. So, when a client sends a 0x2712 command
with authentication bytes set to NULL, the device compares NULL with NULL and authenticates
the client. After authentication, the device is fully controllable including toggling the camera
on/off, enable/disable recording to SD, and motion control (pan/tilt). However, live audio and
video feed cannot be read because it is encrypted with the “enr” (key), unless the buffer
overflow in the next paragraph is exploited [12]. (CVE-2019-9564)

Buffer overflow vulnerability can be exploited by sending an input of size 0x7f or more with the
I0Ctl command with ID 0x2776. It will overwrite the return address of the function. In the
request, the length of the buffer is specified in the first byte, then the buffer [12]. This attack
could allow remote code execution on the camera device. (CVE-2019-12266)

Furthermore, the content of the SD card can be read through the webserver running on port 80
of the device. When an SD card is inserted, the device creates a symlink in the www directory
which is served by the webserver. The SD card also holds the log files, which may include the
“enr” (key) and Unique Identification Number (UID) values that could be used to connect
remotely. [12] There is no CVE for this vulnerability, but was fixed in a firmware release January
29 2022 [13].

Tools like Trommel and Firmwalker scans through the embedded devices file to identify the
potential vulnerable indicators. These tools search in the extracted firmware filesystem for
vulnerabilities and things of interest like passwords, configuration files, scripts, URLs, email
addresses, web servers, etc [14][15].

The Wyze Cam camera implements a weak encryption algorithm for its communication. The
security researcher was able to compromise the device and disclose sensitive information like
users' email addresses, passwords, WiFi network names, and WiFi passwords [16].

Based on the DMCA security research exception, it is legally allowed to perform security
research on loT devices and Firmware analysis for classroom purposes. Any vulnerabilities
found during this process will be disclosed responsibly to the company/vendors without violating
the DMCA [17] [.

Project Description

Project Idea

Our project idea is to perform firmware analysis on an IOT device in the hope of finding
vulnerabilities that could be exploited by a malicious attacker. The device that will be performing
our analysis on is the Wyze Cam V3. The Wyze Cam V3 is a small IOT camera that allows for
live surveillance through the “Wyze” smartphone app. The firmware for the Wyze Cam V3 is
hosted on the website of its manufacturer for anyone to download. We plan to download the
firmware and perform a variety of analysis techniques on it until we have a solid understanding
of the device and/or have identified potentially exploitable vulnerabilities.

Implementation of Project

We will start by performing manual analysis on the firmware. This manual analysis will include
using tools like binwalk to dissect the firmware and command-line tools (like find and grep) to
search the firmware’s file system for notable artifacts. After a thorough manual analysis, we will
use automated analysis tools (like trommel and firmwalker) to identify possible vulnerabilities in
the firmware. If there are any vulnerabilities identified by the automated analysis then we will
follow-up on any identified vulnerabilities with manual analysis. If there aren’t any vulnerabilities

identified by the automated analysis tools then we will perform manual vulnerability analysis
(static analysis, dynamic analysis, fuzzing) on custom binaries in the firmware. If we are able to
find an exploitable vulnerability then we will develop a proof-of-concept exploit and test it on the
Wyze Cam V3.

Required Materials

Wyze Cam V3 Firmware

Manual Analysis Tools (binwalk, find, grep, etc.)
Automated Analysis Tools (Trommel, firmwalker, etc.)
Linux Environment (or Linux VM)

hownh =

Optional Materials (only needed if exploitable vulnerability is found)

5. Wyze Cam V3 (only need if found exploitable vulnerability)
6. Wyze App for Android / iPhone (allows the user to interface with the camera)

Milestones

Perform preliminary manual analysis on Wyze Cam V3 firmware
Map out important components of firmware

Perform automated vulnerability analysis

Perform manual vulnerability analysis

[Optional] Develop POC exploit for identified vulnerabilities

Timeline

4/12 - Finish manual analysis of firmware and mapping of important components
4/19 - Finish automated vulnerability analysis

4/26 - Finish manual vulnerability analysis and any exploit POC

5/2 - Finish final presentation and final report

Project Results

Hardware Analysis

The hardware analysis focused on the holistic capabilities of the board, specific to the boot
processes and instruction set characteristics. This supported analysis of system boot, and
binary analysis of the firmware based on the Ingenic T31 System on Chip (SoC) instruction set.
As you will see, a memory map has been partially created, identifying sections of memory
pertinent to u-boot and Linux. Memory assigned to peripherals was not included due to time
constraints and depth of analysis, however is available to be completed in the future.

U-boot was accessed via JTAGULATOR™ (http://www.grandideastudio.com/jtagulator/) and the
Linux virtual machines (VM). A noble attempt at soldering wires to six test pads was attempted,
with disappointing results, and is left for a future attempt.

Hardware was emulated using Firmadyne software provided on the class VM. Root access was
gained on the emulated system. However, root access was not gained on the actual Wyze
camera hardware. Attempts to do so will be described in detail.

Physical disassembly

The electronics are housed in a waterproof exterior with rubber gaskets sealing the front face
with camera lens, rear USB wiring. The USB port and setup switch face towards the bottom,
with rubber protective covers. A speaker is mounted to the upper rear portion of the case and
sealed in place with silicone. Silicon is also placed over the USB wire entry point below the
speaker. The case is assembled with three recessed phillips-head screws. A hobby screwdriver
can be used to remove the screws. Rubber plugs cover the screws in the recessed openings. A
plastic white frame covers the openings and presents a finished appearance. These features
can be seen in the pictures in Figure A-1.

T
Figure A-1: Clockwise from left: camera front, left side, rear, and bottom [19]

Three wires connect the electronics to the case: a front light sensor, the rear speaker, and the
rear USB cord. Care should be taken to not stress these wires during disassembly. The front
sensor and speaker can be disconnected from the board, however the silicon securing the USB
cable will need to be removed to relieve strain while analyzing the components. Figure A-2
shows the electronics removed, with the speaker and USB wires running toward the back.
Notice the speaker and USB cable connect near each other on opposite sides of the top board.
Also notable is that the top board houses most of the integrated circuit components.

http://www.grandideastudio.com/jtagulator/

The electronics components are mounted on two printed circuit boards (PCB) connected by a
wire bus. The boards are folded on top of one another and connected by more screws (also
phillips head).

e T ' e

Figure A-2: Case with electronics partially removed [19]

Component ldentification and Analysis

The internal electronics consist of two PCBs connected by a wire bus. The boards are held
together by the plastic housing and phillips head screws. The front board contains the infrared
Light Emitting Diodes (LED), Secure Digital (SD) card reader, switch, six test points, and 20-pin
cable connector. This board can’t be seen in Figure A-2 because of it's placement between the
black front plastic face and the visible rear board.

The rear board is easily seen in Figure A-2, facing upward and provides the insertion points for
the Integrated Circuits (IC). Installed on it are the microprocessor, wifi, sound, and optical chips;
USB, speaker, light sensor, and 20-pin cable connectors; WiFi antenna; and through-holes for
Universal Asynchronous Receiver-Transmitter (UART) connections. For the purpose of
component identification, the terms “primary” and “secondary” will be used to identify one board
from the other. The board visible in Figure A-2 will be identified as the “primary” board.

Primary Board Analysis

The primary board (Figure A-3) provides insertion points for multiple IC, power, speaker, and
20-wire bus. Clockwise from top center: 128 MB flash memory, Realtek TRL8189FTV 802.11n
WiFi processor (green PCB) w/ 26.0 MHz clock and WiFi antenna, Ingenic T31 MIPS32 System
on Chip (SoC), 24.0 MHz clock, and power conditioning completing the cycle on the bottom left .
The SmartSens SC4335 image sensor and Broadchip BCT8933 audio amplifier are located on

reverse side center and top right respectively, as shown in Figures A-4 and A-5. [19] directly
references the Ingenic T31 and Realtek 8189 chips but not the other components.

i

> aql

Figure A-3: Primary board (side A)

§ 802.11b/g/n WiFi
Realtek eI IS
189 3 ?
Laimzs1 i | @

1Y

~_ ie Fngenrt
ingenic 151

I [1405C0 - 4 §
: JERRER * g _ 150402607BRX20 A
Ea s i M 01060470032110 |

Source code is

Figure A-5: Primary board (side B)

10

20-pin cable
connection to board 2

sc4335
Smartsens
CMOS sensor

.....

i I--i- ‘ p— - —
VERE (Wt mJ
S HERCN =8 -
T sensor | oI -
- ! Speaker /
g connector | * i
! '

Figure A-6: Primary board (side B, labeled)

Ingenic T31 SoC

The Ingenic T31 is a System on Chip design and is comprised itself of the XBurst1 Central
Processing Unit (CPU) (1.5 GHz, dual coprocessors, 128 bit SIMD Engine), integrated 128 MB
DDR, video processing, RISC-V core @ 500 MHz, audio codec, UART/SPI/1I2C/JTAG
interfaces, and onboard encryption services.

PORAwatch dog
AES286/DES/OTP

DTRNG/RSA/SHA

DVPIBT

Image Signal
MIPI CSI-2 Processor

Smart LCD

Audio Codec/l2S 12Cx2/UARTX3/SPIx2/
Digital MICx4 SP| slave SDIOx2/USB 2.0 OTG m ADCx3/PWi x4

Figure A-7: Ingenic T31 System on Chip [20]

11

The T31 can be dual-booted (Figure A-8) and claims to be image-stable by 200 ms using
auto-exposure and auto-white balance hardware acceleration. Initial boot is assumed to be

accomplished by the RISC-V processor [21], which then bootstraps the XBurst1,but this has not

been confirmed by other sources.

Security support by the T31 includes Secure Boot and on-board encryption (AES, DES, RSA,
SHA, TRNG, OTP).

Ultra high frequency, up to 1.5GHz
Vector Deep Learning accelerator base on SIMD128

cru 64K + 128KB L1/L2 Cache
RiscV independent lite core
H.264/H.265/MJPEG encoder
Video Maximum 2592*1920@301fps
Encoder \World class advanced encoder engine

Support multiple streaming and various features

Dedicated optimizations for low light and surveillance scenarios
Upgraded 20 | 3D noise reduction
Starlight ISP Sharpening enhancement, ROI-AE
Advanced WDR, DRC
Distortion correction

Memory Capacity of 512Mbit or 1Gbit

ity AES/RSA/SHAITRNG/OTP
Securiy Support secure boot

Support deep learning algorithm with high precise and good flexibility
Al algorithm Human detection, Facial detection/recognition

Cry detection, Vehicle detection, Pets detaction

22nm process

Package Package: QFN/BGA
Support Fast Boot
Fast Boot = DI e

- Fast AE | AWB
- ~200ms stable video output

Support 4-channel digital MIC array
Wid tensi Support loT-WIFI/ BT/ 4
YHide exiension Support SLCD Display

Support UVC / UAC

Integrated Audio Codec
Support Rate 8K/12K/MBKI24KI32/44 1KI48KIGEK

QLo Support 125 Interface

Echo cancellation
Connectivity & WOT, ADC, UART, I2C, SPI, GPIO, SDIO, PWWM, USB-OTG, GMAC
Pel’iphel’a|5 LA el . r N . y . . vyivl, - . ViF

Figure A-8: Ingenic T31 Specification [20]

The T31 SoC uses a robust set of interfaces, some of which are used for internal
communications or with other chips on the PCB. This includes UART, JTAG, 12C, and SPI.
These interfaces are identified in Figure A-9.

12

T31_10/NOR FLASH/EEPROM

s
I T o
8 ey - DVF_DH_MPLDATAF| GG THEN_MSG1_ELI_B3ADC,MGL_.G2 D1 F sueTe o
Tan — DR D WP DTN ‘GAAL_THI_MBC D105 DAL WCUC 500 D7 PR S
E ety el Dvep e cume Erpegietyvst Yo, - Qe
= e) SnE ey oo PR : Y
AT VR B e AT AN AT REDY 5o TE Pa = uac_faDi [
—aar| DVELDE_SDO_UART_THDFAE CO_WRLF R TR m
757 OVE_D_AD_uaRT1_Rom_ ey GaAD_FO MR £ p1_Fam St m
2| OVP_DM_BCC_UARTI_CTH_ MGG _DS_FADE CMAC_MOCK_MBC D0 I8 BOTO_SLCO D4 TORAL N GMAC_MOC [
=i Ove’ AT mC 01 PAT ‘GRAAL_NENO_MIG1_C1_S.CO 08Pt GMAC MDD [
Xggr| DVE_DNE_SDE_UARTY T MSCT_B3_Pais
3R] DR D1 DS AR, RO, M1 DL PATS
- =
e M| DVE_PCLS BA PR PATE WBCS DR BB
] AP e ML RAT_PAIS NGO SSBLY DR PROt [=gi—p
H 1 - s et o
] %ﬁ&ﬁm&wﬁf BBV GAK_PE0A g3
R — 120 mna wl 2 12C e
22 suma sos sog pasz
ook Py -
. " =] i | E__ |
1l sereson meser <SR EEET WL pa P
— Pt S TR], vec_ve
mos
3 o= .
<
i 37 oE_ AT 3 VeIV
R 51 use e i
=y a1 wor 1 wer 1
i o 22 = MecuUT]
B BEm LT | UMTLATS it o 238 | june Ik
< 1
HET| VAT TG, O B0 Y. PR
il = 2 SooE:_mo PR oomemeeaea P
S e seres | JART —
— T i o
ol RRD_ T PR [§ [i)
ma) e/ ary
. satpeaze ums
PR Y S | (e — vees, e |2 oo, R S
| S oA e pacs
PRl b Ryt o Voo | X0 WLV
Voo
i e E
P, DRy VELE S _DT_pezT Voo
e R -
WRL_PWR_EN M . "
| CARC_DATI_ 55 _CE0_FRI0 Pu oo |2 L e v WARC: _ayec g VOGN
O™ pgi conven e N
oo be——EE2 o H vomes ™ BoRFLL A0 T ey
Vool CORPLLVCED [5 L T
™ ¢ pocrems g7 Eaaminy] veEIVE .
ol e gl - e [E—
ves_wa - B J!‘,
e U AT
§ e T - rersr e | = n
e
=5 T3 =

Figure A-9: T31 pinout assignments

Of particular note are pins 73 and 74, which lead to through-holes on the PCB. The other
interfaces (except JTAG) are assigned pinouts, but don’t lead to through-holes and therefore
require a little more work to access. This is shown in Figure A-10.

13

Figure A-10: T31 pin assignments which may be externally probed

The pins of note are color coded, and were visually traced to the color coded through-holes (in
the case of the UART pins), or via’s (as in the case of the SPI pins). The Reset and Boot Select
pins are noted (for possible future use) but not traced. The UART through-holes are outlined in
purple at the bottom of Figure A-10. The SPI and 12C pins lead to vias on the PCB.

Using this diagram and [24], the data flows were traced to the different components on the PCB
as shown in Figure A-10.

14

Block Diagram

ETH_RMIVWIFI/AUDIO

T31_10/NOR FLASH/EEPROM

Sensor SC4335

Lines are color-coded to match the next slide

T31_QFN_SC4335_38_V1_0_190905B.pdr

Figure A-11: Wyze Cam v3 Block Diagram

This diagram can be easily translated to the physical components as shown in Figure A-12.
Figure A-12 provides the legend for the color codes. The dashed lines identify assumed
communications paths and have not been verified. Verification and validation of these traces are
left for future work. Although a JTAG interface is identified in the programmer’s manual [22], it is
not present on the schematic. I'm assuming that is because it is used internally to the T31 SoC,
but this too should be verified.

ER® nm e
® 5 -0*® @vs
l'!.-fe 55 wew

These color codes should match those on the schematic in the previous slide

T31_QFN_SC4335_38_V1_0_190905B.pdi

Figure A-12: Pinout traces from the T31 to other locations

15

XBurst1

The XBurst1 core CPU is based on the MIPS 32 bit revision 1 (MIPS32 Release 3) Reduced
Instruction Set Computer (RISC) architecture. It has a 9-stage pipeline. It has 32 registers, each
32 bits wide. The Data Cache (D-Cache) and Instruction Cache (I-Cache) are each 32KB in
size, which implies a Harvard architecture. It has a Memory Management Unit (MMU) that is 32
bits wide, supports page sizes of 4KB to 16MB for any entry, and can address 4GB of address
space [22]. The MIPS DSP ASE Revision 2, MIPS MT ASE, SmartMIPS ASE, MIPS DSP
Extension and trace logic are not implemented. Vectored inputs are implemented [22].

Additional details for the T-series processors can be found in Figure A-13.

MIPS32-R1 ISA Yes Yes Yes Yes Yes Yes
MIPS32-R2 Integer Instructions No Yes Yes Yes Yes Yes
MIPS32-R2 Floating point ISA No Yes Yes Yes Yes Yes
Ingenic MXU1 Yes Yes Yes Yes Yes No
Ingenic MXU2 No No No No No Yes
L1 l-cache 16kB 16kB 16kB 32kB 32kB 32kB
L1 D-cache 16kB 16kB 16kB 32kB 32kB 32kB
L2 cache (unified cache) No No 256kB" | 512kB" | 512kB? | ref-soc
Ingenic PMON No Yes Yes Yes Yes Yes
CoreSceduler (for MP-cores) No No No Yes Yes No
SMP support No No No Yes No No
Big-Little cores support No No No No Yes No
CPO.ErrCtLWST No No Ye Yes Yes No
Notes:

1) 128-byte cache line, 4-way set association, WT only
2) 32-byte cache line, 8-way set association, WT & WB

Figure A-13: Ingenic processor specific notes [22]

Registers
The XBurst1 has 32 registers, each 32-bits wide.

Six kernel scratch registers are used for temporary storage of information and implemented at
register 2,3,4,5,6 and 7. CPO Register 15, Select 0, contains the company ID, processor ID, and
revision [22].

The CPU number is identified in CPO Register 15, Select 1. CP0 Register 12, Select 0, contains
the operating mode of the CPU (kernel or user) and coprocessor information. Supervisor mode

is not implemented [22].

Debug registers are CP0O Register 23 Select 0 and Select 6. Debug exception and save
information is included in CPO Register 24 Select 0 and 31 Select 0 [22].

16

Memory Management Unit

The XBurst1 contains an on-chip MMU which performs address translation. The MMU is 32
bits wide, supports page sizes of 4KB to 16MB for any entry, and can address 4GB of address
space. A virtual memory map is shown in Figure A-14. User space (kuseg) is from 0x0000 0000
to Ox7FFF FFFF. This virtual address space may or may not be identical to the physical address
space, depending on the status of the configuration registers. When kuseg does address a
virtual space, the address is extended by an 8-bit ASID field to form a unique virtual address.
kseg0 and kseg1 translated from virtual to physical by subtracting 0x8000 0000 or 0xA000 0000
from the virtual address. In kernel mode, the first three bits of the address determine which kseg
is selected [22].

User Mode kernel Mode Debug Mode
0xFFFFE FEEF kseg3: Mapped kseg3: Mapped
dseg
&E0000000
kseg2 kseg2
Mapped Mapped
0xC000 0000
kseg1 kseg1
Unmapped, Unmapped,
OXAD000000 Uncached | Uncached
Kseg0 Ksegl
Unmapped Unmapped
0xgooooooo] | _cacheable | _______ cacheable
useg kuseg kuseg
Mapped Mapped Mapped
00000000) | L

Figure A-14: Virtual Memory Map [22]

A mapping of the u-boot and kernel space was created from the u-boot output, binwalk output,
and Ingenic T31 documentation. This memory map is shown in Figure A-15. It is incomplete,
however, and should be updated to include peripherals and other missing information. The
Linux Entry points (there are two shown) need to be resolved; one was observed during u-boot,
the other came from binwalk [22].

17

end (upper) address reserved for U- 0x8400 0000
boot
start (lower) address reserved for U- 0x83F9 0000 (436 kbytes)
hoot (U-boot executable code)

Global data 0x81F8 EF64 (124 bytes)
Board info 0x81F8 EFEOQ (32 bytes)
Heap 0x81F8 FOOO (32772 kbytes)
Stack 0x81F6 EF48 (2276 bytes)
Boot parameters 0x81F6 E664 (128 kbytes)
Lower address of Linux kernel stored | 0x8060 0000

in flash

Squashfs (top) 0x8056 0000

Squashfs (bottom) 0x8052 0000

Linux entry point (from uimage 0x8041 6900

header, see binwalk output)
Start (lower address) of onboard U- 0x8001 0000
boot image stored in flash (from u-

boot output)
Top of useg/ kuseg 0x8000 0000
User-defined physical RAM map 0x0000 0000 to 0x0600 0000 (600 MB)
End of “determined” usable RAM after init 0x005B 0000 (additional 770kB)
Start of “determined” usable RAM after init 0x0057 1000
unidentified 0x0056 1000 to 0x0057 1000
End of “determined” usable physical RAM 0x0056 1000 (25 MB)
Start of “determined” usable physical RAM 0x0001 0000

Figure A-15: U-boot and Linux Kernel Memory Map (incomplete)
JTAG
JTAG operates in either MIPS or ACC mode. Mapped/unmapped address space details can be
found in [22] for the debug modes [22].

Instruction Set Architecture (ISA)

The XBurst1 is based off of the MIPS32 revision 1 (MIPS 32 Release 3) architecture. It
implements the MIPS32 instruction set to address the need by video, graphical, image, and
signal processing. It also uses SIMD extensions. The XBurst ISA is called the MIPS
extension/enhanced Unit2 (MXU2). It supports 8, 16, 32, and 64 bit signed and unsigned
integers; 32 bit single precision and 64 bit double precision floating points. It uses 32 general
purpose registers, vrO through vr31, each 128 bits wide, and two control registers (MIP and
MCSR). It allows operations on byte, halfword, word, doubleword, and vector sizes. The
instruction format, in general, is [23]

Instruction vrd, vrs [, vrt]
Where:
vrd is the destination register
vrs is the source register / operand 1
vrt is operand 2

Secondary Board Analysis

The secondary board consists of the infrared Light Emitting Diodes (LED), Secure Digital (SD)
card reader, switch, six test points, and 20-pin cable connector. The most interesting thing about

18

this board are the six test points, visibly labeled TP1 through TP6. An attempt was made to
solder wires to this board, which damaged the PCB. Particularly, the solder unintentionally bled
over to a pad next to TP6. A continuity test showed they were the same point. So | cut/scraped
the solder between TP6 and the square pad hoping to break the connection. | achieved my
goal. | realized that | damaged the board when under test it wasn’t behaving as expected
(multiple resets in a never-ending loop). When | bought a new camera and performed a
continuity test between TP6 and the square pad next to it, | realized they are the same point by
design. The soldering performed is shown in Figure A-16.

Other mistakes with this board, contributing to rendering it unusable, were: the 20-pin cable
connecting the boards was crimped due to rough handling; while under test, the GND pin on the
primary board (the outermost pin) was connected to +3.3V. The pin assignments, from left to
right as in Figure A-16, are: GND, transmit, receive. For the TP# points, TP5 is confirmed GND
(via continuity test with the WiFi antenna on the primary board).

UART Access

UART access is available by the three through-holes located at the bottom of the primary board.
The test setup used JTAGULATOR as a means to both identify the TXD and RXD pins, and as a
UART passthrough allowing a serial connection to the Wyze camera. The test setup is shown in
Figure A-17. Clips were used instead of soldered connections.

Walking through the process, the first step is to identify the ground connections on both the unit
under test (UUT) (which is the Wyze camera) and JTAGULATOR. A continuity test identified the
GND through-hole by touching one probe to the through-hole and the other probe to the WiFi
antenna on the UUT. A black clip was connected from the GND through-hole on the UUT to the
GND pin on the JTAGULATOR. Another continuity test was performed, this time one probe

19

touching a GND pin on the JTAGULATOR, and the other probe touching the WiFi antenna.
Continuity was confirmed. A yellow clip was attached to the middle through-hole and to the
channel 1 (ch1) pin on the JTAGULATOR. A red clip was attached to the innermost
through-hole, and then connected to chO on the JTAGULATOR. Careful not to connect either the
red or yellow wire to the VDJ pin (just about the GND pin) on JTAGULATOR or the board may
become damaged. Finally, test that the yellow and red connectors are not grounded.

Figure A-17: Setup for UART access

First connect the UUT to power using the white USB connector. Then connect the
JTAGULATOR to power using the built-in USB port. This completes the physical connections.

Now spin up your VM. Disconnect power from the UUT (or JTAGULATOR) and reconnect. A

pop-up window like the one shown in Figure A-18 should appear. Select your VM from the list
and close the pop-up.

20

New USB Device Detected

Choose where you would like to connect Future Devices FT232R USB UART

© Connect to the host
(") Connect to a virtual machine

Wirtual Machine Name:
ENPMB&4_SW

[_JRemember my choice and do not ask again

OK Cancel

Figure A-18: Connection pop-up for the JTAGULATOR connection

If the pop-up disappears after 10 seconds or so, you can either repeat the disconnect/connect
procedure described above or (if using VMWare) goto the VM drop-down menu, select
“‘Removable Devices”, then “Future Devices FTR232R USB UART”, and then “Connect
(Disconnect from Host) as in Figure A-19. This will connect the JTAGULATOR to your VM.

@ EMPMBEL_SW - Wviware Workstation

File Edit View WM Tabs Help 1l - Q| D e I [Dj & IZ‘ -
B @ Power >
@ H 1
G Fome (v @ Removable Devices > CD/DVD (SATA) >

Ubuntu Deskto Pause Ctrl+shift+pP ~ Network Adapter
Cheng Uei Precision HP Wide Vision HD Camera
Ctrl+G Intel(R) Wireless Bluetooth(R)
— Magic Control Té USB Station
5 Snapshat Future Devices FT232R USB UART
Capture Screen Ctrl+Alt+Priscn Texas Instruments USBtol2C Solution
Shared Yubico YubiKey OTP+FIDO+CCID 1
Shared Yubico YubikKey OTP+FIDO+CCID O

Send Ctrl+Alt+Del

Grab Input
Connect (Disconnect from Haost)
Change Icon...

~ Show in Status Bar

Manage

Ctrl+D

Cutter 1.8.0.
desktop

Ghiara 9.0

Figure A-19: Connecting JTAGULATOR to your VM (Ubuntu VM on VMWare shown)

Next we need to establish a serial connection to the JTAGULATOR. To do so, either connect to

using Putty software, or from the command line using screen. But first we must identify the
communications port on which the VM is connected to the JTAGULATOR. To do so, open a
terminal on your VM and type “dmesg | grep tty”. If the JTAGULATOR is connected to the VM,

we should see it in the Linux response as in Figure A-20.

21

esslp@ubuntu:~5$ dmesg | grep tty

[0.004000] console [@] enabled
L 35.191514] usb 2-2.1: FTDI USB Serial Device converter now attached to usBe

Figure A-20: Finding the COM port of the JTAGULATOR.

If the JTAGULATOR becomes disconnect, either intentionally or through some other means, the
response to the “dmesg | grep tty” will include multiple “connected” and “disconnected”
messages with timestamps. In the example of Figure A-21, the last timestamp at 70314.004053
confirms that the FTDI USB serial device is connected to ttyUSBO.

esslp@ubuntu:~$ dmesg | grep tty
0.004000] console [tty@] enabled
35.191514] usb 2-2.1: FTDI USB Serial Device converter now attached to usBe
392.958707] ftdi_sio USB@®: usb_serial_generic_read_bulk_callback - urb stopped: -32
392.980615] ftdi_sio USBO: error from flowcontrol urb
392.980758] ftdi_sie USB@: FTDI USB Serial Device converter now disconnected from USBO
2469.276297] usb 2-2.1: FTDI USB Serial Device converter now attached to usBe
3241.046750] ftdi_sio USB@®: usb_serial_generic_read_bulk_callback - urb stopped: -32
3241.074141] ftdi_sio USBO: error from flowcontrol urb
3241.074819] ftdi_sio USB@: FTDI USB Serial Device converter now disconnected from USB®
[69823.724198] usb 2-2.1: FTDI USB Serial Device converter now attached to UsSB®
[69833.415164] ftdi_sio USB@: FTDI USB Serial Device converter now disconnected from USBO
[76134.004053] usb 2-2.1: FTDI USB Serial Device converter now attached to usBe

Figure A-21: Example output from “dmesg | grep tty”

The connection should also be listed in the /dev directory, as shown in Figure A-22.

esslp@ubuntu:~$ ls -1 grep tty | tail -n1e
Crw-r root 7 May 18:49 ttysS3
Crw- root 4 4 May ttysS30
Crw- root : May ttys31
crw- root 4 68 May ttys4
Crw- root : 69 May ttyss
root 4 May ttyse
root 4 May ttys7?
root 4 May ttyss
May ttys9
May 4 ttyUSBe

Crw-

crw-
Crw-
Crw-
Crw-rw----+
esslp@ubuntu:~$

L e e e e e e
\D 00 000000 Q0Q0 00

Figure A-22: Inspecting the /dev directory on Linux

Once the communications port is identified, the next step is to establish a serial connection. |
used Putty, but you can use the tool of your choice. Use a connection speed of 115200 baud
and enter the connection port into the “Serial line” text box. Select the “serial” radio button. Then
click “Open”. These settings are shown in Figure A-23.

22

@ @@ PuTTY Configuration

Category: Basic options For your PuTTY session
¥ Session Specify the destination you want to connect ko
Logging Serial line Speed
v Terminal /dev/ttyUsBO 115200
Keyboard Connection type:
Bell Raw Telnet Rlogin SSH @ serial
Features Load, save or delete a stored session
¥ window Saved Sessions
Appearance wyze
Behavi
Te a‘:'f,m Default Settings Load
Smlnsk'a ton BBB Serial =
ave
(EIE(on BBB USB Serial
olours JTAGulator Delete
Fonts
) wyze
¥ Connection
Data
Proxy Close window on exit:
Telnet @® Always Never Onlyon clean exit
Rlogin
> SSH
About Open cancel

Figure A-24: Serial connection settings

The terminal window should look like something similar to the top of Figure A-25. Type ‘h’ for
help.

@S ® [devfttyUSBO - PuTTY

U LLL
JIJTTTTTIT A
JIIT TITTTTT RARAR

UUUOUUUD LLLLLLLLL ARA- TT
)
AR

Figure A-25: JTAGULATOR terminal

Type ‘U’ for UART. Again, type ‘h’ for help. To set the voltage, type ‘v’. Set the voltage to 3.3V by
typing ‘3.3’ and then enter. JTAGULATOR will warn you that VADJ pins on the PCB should not
be used for this configuration. To identify the TXD and RXD pins, type ‘u’ then enter. Enter 0 for
the starting channel and 1 for the ending channel. No pins are known, so type ‘N’ or leave the
answer to “Are any pins already known?” as default. JTAGULATOR is letting us know it will test
two permutations: TXD on through-hole 0 and RXD on through-hole one, then TCD on
through-hole 1 and RXD on through-hole zero. The next prompt asks for a text string. Leave this
blank by typing enter. Leave the delay as 10ms (or enter 10 if it is not already set). Leave

“ignore non-printable characters?” to the default of No. And then press the spacebar to start.
These entries are shown in Figure A-26.

23

I only, continu

with for F

o abort),. I

Figure A-26: JTAGULATOR entries for identifying the transmit and receive through-holes

The response should look similar to Figure A-27. The correct configuration is the longest set of
data. In this example the TXD through-hole is associated with the yellow wire (the middle
through-hole) and RXD is associated with the innermost through-hole (the red wire) as shown in
Figure A-17.

Next, type ‘p’ and then enter. The terminal will prompt you for the TXD pin, RXD pin, and baud
rate. The baud rate should be set to 115200 and set the “enable local echo?” to ‘n’. Press enter
twice. “WCVC login: “ should be shown on the terminal, indicating a successful pass-through
connection from the VM to the camera.

24

1000} [10]: 10

Figure A-27: JTAGULATOR output

Analysis of the U-boot Output

After having established a serial connection with the camera by leveraging the UART interface,
power-on (or disconnect and reconnect power to) the camera. The camera will output data to
the terminal during the boot process similar to Figure A-28. This information was used to inform
the memory map of Figure A-15.

® S @ [devfttyUSBO - PuTTY

Figure A-28: Memory test portion of the U-boot output

25

The U-boot version, SPL 2013.07 (Dec 21 2020 - 18:19:28), is shown in the first line of Figure
A-28. Figure A-29 shows the rest of the U-boot output during the memory test.

@S E [dev/ttyUSBO - PUTTY

Figure A-29: U-boot memory test

After the memory test, the processor type is identified as the T31. This presumably identifies
when the T31 XBurst1 core is booted and configured. Virtual memory addresses are shown in
Figure A-3. The stack pointer is initialized to 0x81f6_ef48. Memory is reserved for U-boot from
0x83f9_0000 to 0x8400_0000. The “image entry point”, as shown in Figure A-29, presumably
represents start of the U-boot image that will execute next from the onboard flash memory.

26

I-Boot 2013,07 (Dec 21

Board: Tngenic ¥
TIRAM:

Figure A-30: U-boot image memory allocations
Next the GPIO assignments are listed, as shown in Figure A-31. This is also where the SD card,

if inserted, would be recognized. If a suitable binary is on the SD card, named demo_wcv3.bin,
then the flash process will begin.

27

able_gpin
he !

Figure A-31: GPIO allocations

After this, the Linux kernel is booted. The top few lines of this output are shown in Figure A-32.

Shown are the architecture (MIPS), location of the onboard (“legacy”) image at 0x8060_0000,
the Linux kernel version, size of the kernel, and the address of the kernel 0x8041_6900. The
“entry point” is presumably

Figure A-32: Start of boot for Linux kernel

28

The remaining U-boot output is shown in Figure A-33 through Figure A-37. There is future work
needed to complete the memory map from the U-boot output, debugging, and other sources.
Figure A-15 shows the current memory map.

d.

domain

Figure A-33: Terminal output while the Linux kernel boot (1 of 5)

29

@ ®©® [dev/ttyUSBO - PuTTY
i 1

TCP:

LDF

UDP-Li

HET:

wndule,

t module,

R
R
F
F
f

Figure A-34: Terminal output while the Linux kernel boot (2 of 5)

30

Figure A-

HHHHHEHHE
4, BUILD_TIME=[=

H _ i len 2

35: Terminal output while the Linux kernel boot

(3 of 5)

31

@S E [dev/ttyUSBO - PuTTY

10

_FEATURE_ID [1]

Figure A-36: Terminal output while the Linux kernel boot (4 of 5)

32

Jdev/ttyUsSBO - PuTTY

Figure A-37: Terminal output while the Linux kernel boot (5 of 5)

Hardware Emulation

The hardware was emulated using Firmadyne software. Firmadyne uses QEMU to emulate the
underlying hardware. This walkthrough won’t describe the process of installing and configuring
the Firmadyne software on your VM.

The commands entered for a successful emulation were modeled after the website’s “Usage”
section available at [24]. The figures that follow will support the step-by-step procedure below.

The binary must first be extracted from the camera firmware zip file. The zip file is available on
Wyze'’s website. Note the directory where the commands are being executed. It's recommended
to execute these commands from the Firmadyne home directory as defined in the configuration
file. To extract the binary, type the command at the top of Figure A-38.

33

(embedtools) esslp@ubuntu:~/wor fembedtools /firmadyne$./sources/extractor/
extractor.py -b Wyze -sql 127.0.6.1 -np -nk ~/project/demo_wcv3.bin images
>> Database Image ID: 4

/home/esslp/project/demo_wcv3.bin
>> MD5: 527944acb4cb2883ca5546fc780fbcfc
>> Tag: 4
>> Temp: /tmp/tmphmbMOW)
>> Status: Kernel: True, Rootfs: False, Do_Kernel: False, Do_Roo
tfs: True
>> Recursing into archive ...)
>>>> Squashfs filesystem, little endian, version 4.0, compression:xz, size: 3853
788 bytes, 384 inodes, blocksize: 131072 bytes, created: 2022-02-17 02:13:21)
>>>> Found Linux filesystem in /tmp/tmphmbMOW/ demo_wcv3.bin.extracted/squashfs-
root!

=-+--ing: completed!
IseView |ng up /tmp/tmphmbMOW
(embedtools) esslp@ubuntu:~/ ace/embedtools/firmadyne$ 1s images
4.tar.gz README.md

Figure A-38: Extracting the Wyze cam v3 binary

At the end of the extraction process, a compressed tarball should have been created under the
images folder. Note the Database Image ID. You will be using it later in other commands. The
‘-b’ flag can be any string that represents the brand name of the device. The ‘-np’ and ‘-nk’ flags
represent no kernel and no parallel operation. The command seemed to work, so we moved on
and didn’t question the flags. Observe how in Figure A-38 the file system is identified as
Squashfs and little endian.

The next two commands identify the architecture and store in the SQL database the value and
other select information from the firmware. These two commands are shown in Figure A-39.
Notice that a password is requested. If the installation instructions were followed, it should be
“firmadyne”.

(embedtools) esslp@ubuntu:~/workspace/embedtools/firmadyne$S ./scripts/getArch.sh
./images/4.tar.gz

./bin/busybox: mipsel

Password for user firmadyne:

(embedtools) - tu: $./scripts/tar2db.py
-1 4 -F . /im

Figure A-39: Get the architecture of the firmware

Type the next command as shown in FigureA-40. This will create the QEMU image.

34

(embedtools) esslp@ubuntu: / s/firm: e$ sudo ./scripts/makel
mage.sh 4
Querying database for architecture... Password for user firmadyne:
mipsel
----Running----
----Copying Filesystem Tarball----
----Creating QEMU Image----
Formatting '/home/esslp/workspace/embedtools/firmadyne//scratch//4//image.raw’,
fmt=raw size=1073741824
---Creating Partition Table----

Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier @xfa4e1074.

Command (m for help): Created a new DOS disklabel with disk identifier @xd2d9a6e

-

=

Command (m for help): Partition type

p primary (0 primary, ©® extended, 4 free)

e extended (container for logical partitions)
Select (default p): Partition number (1-4, default 1): First sector (2048-289715
1, default 2048): Last sector, +sectors or +size{K,M,G,T,P} (2048-2697151, defau
1t 2097151):
Created a new partition 1 of type 'Linux' and of size 1023 MiB.

Command (m for help): The partition table has been altered.
Syncing disks.

----Mounting QEMU Image----
add map loopOpl (253:0): © 2095104 linear 7:0 2048
ting Filesystem----
.42.13 (17-May-2015)
Discarding device blocks: done
Creating filesystem with 261888 4k blocks and 65536 inodes
Filesystem UUID: a®10f@49-caf1-4d79-82e8-d5f5512406f3
Superblock backups stored on blocks:
32768, 98304, 163840, 229376

bxt Editor

--Making QEMU Image Mountpoint----
---Mounting QEMU Image Partition 1----
----Extracting Filesystem Tarball---

--Creating FIRMADYNE Directories----
----Patching Filesystem (chroot)----

Warning: Recreating device nodes!
Removing /etc/scripts/sys_resetbutton!
---Setting up FIRMADYNE----
---Unmounting QEMU Image----
umount: fhome/esslp/workspace/embedtools/firmadyne/scratch/4/image: target is bu
sy
(In some cases useful info about processes that
use the device is found by lsof(8) or fuser(1).)

Figure A-41: Create the QEMU image

One last setup command gathers network information and saves it to the database. See Figure
A-42.

(embedtools) esslp@ubuntu orksp: > [firmadyne$./scripts/inferNetwo
rk.sh 4

Querying database for architecture... Password for user firmadyne:

mipsel

Running firmware 4: terminating after 60 secs...
gemu-system-mipsel: terminating on signal 2 from pid 14647
Inferring network...

Interfaces: []

Done!

Figure A-42: Gather network information

35

If the setup was successful, the next command should run the emulation. Your output should be
similar to that in Figures A-43 through A-49.

(embedtools) esslp@ubuntu

space edtoc irmadyne$./scratch/4/run.sh

Starting firmware emulation... use Ctrl-a + x to exit

[o.

]
=
w
-
o
2

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
&}
[
[
[
[
[
[
(3
[

]

[cH-N ol NN Rol- oo Rl ool ollo o)

o000

000000] Linux version 2.6.32.70 (vagrant@vagrant-ubuntu-trusty-64) (gcc v
5.3.0 (GCC)) #1 Thu Feb 18 ©1:44:57 UTC 2016

.600000]

.000000] LINUX started...

.000000] bootconsole [early®] enabled

.000000] CPU revision is: 00019300 (MIPS 24Kc)

000000] FPU revision is: 00739300

000000] Determined physical RAM map:

000000] memory: ©0001000 @ 00000080 (reserved)

.000000] memory: 000efOOO @ 00001000 (ROM data)

000000] memory: 00606000 @ 000f0060 (reserved)

.000000] memory: ©f90afee @ 0O6f6080 (usable)

000000] debug: ignoring loglevel setting.

.000000] Wasting 57024 bytes for tracking 1782 unused pages
.000000] Initrd not found or empty - disabling initrd
000000] Zone PFN ranges:

.000000] DMA 0x00000000 -> Ox00001000

000000] Normal 0x00001000 -> O6x00010000

000008] Movable zone start PFN for each node

.000000] early_node_map[1] active PFN ranges

.000000] 0: 0x00000000 -> 0x00010000

000008] On node @ totalpages: 65536

000008] free_area_init_node: node @, pgdat 806923c®, node_mem_map 8100000

.000000] DMA zone: 32 pages used for memmap

000000] DMA zone: @ pages reserved

.600060] DMA zone: 4064 pages, LIFO batch:®

.600000] Normal zone: 480 pages used for memmap

.000000] Normal zone: 60960 pages, LIFO batch:15

.000000] Built 1 zonelists in Zone order, mobility grouping on. Total pag

5: 65024

.0000080] Kernel command line: root=/dev/sdal console=ttyS@ nandsim.parts=6

4,64,64,64,64,64,64,64,64,64 rdinl firmadyne/prelnit.sh rw debug ignore_loglev
el print-fatal-signals=1 user_debug=31 firmadyne.syscall=0

]

]
a
]
]

.000000] PID hash table entries: 1024 (order: ©, 4096 bytes)

.000000] Dentry cache hash table entries: 32768 (order: 5, 131072 bytes)
.000080] Inode-cache hash table entries: 16384 (order: 4, 65536 bytes)
.000000] Primary instruction cache 2kB, VIPT, 2-way, linesize 16 bytes.
.000000] Primary data cache 2kB, 2-way, VIPT, no aliases, linesize 16 byte

Figure A-43: Emulation of the firmware (1 of 7)

36

%] esslp@ubuntu: ~/workspace/embedtools/firmadyne

File Edit View Search Terminal Help
0.000000] Writing ErrCtl register=00000000
0.000000] Readback ErrCtl register=00000000
0.000000] Memory: 252524k/255016k available (4164k kernel code, 2252k reser
ved, 1558k data, 220k init, @k highmem)
[0.000000] Hierarchical RCU implementation.
[0.000000] NR_IRQS:256
[0.000000] CPU frequency 200.00 MHz
[0.000000] Console: colour dummy device 80x25
[0.000000] Calibrating delay loop... 806.91 BogoMIPS (lpj=1613824)
[0.100008] Mount-cache hash table entries: 512
[0.116000] NET: Registered protocol family 16
[0.132000] bio: create slab <bio-8> at @
[0.136008] vgaarb: loaded
[0.140000] SCSI subsystem initialized
[0.140000] libata version 3.00 loaded.
[0.144000] usbcore: registered new interface driver usbfs
[0.144000] usbcore: registered new interface driver hub
[©.144000] usbcore: registered new device driver usb
[0.144000] pci APEO:00:00.0: reg 14 32bit mmio pref: [0x1000000-0x1ffffff]
[0.148000] pci 0000:00:0a.1: reg 20 io port: [Ox08-0x0f]
[0.148000] pci 00BO:00:0a.2: reg 20 io port: [0x00-0x1f]
[0.152000] pci 0A0A:00:@a.3: BAR 8: address space collision on of bridge [8x
1100-0x110f]
[0.152000] pci 0000:00:0a.3: quirk: region 1100-110f claimed by PIIX4 SMB
[0.156000] pci 0000:00:0b.0: reg 10 io port: [Ox@0-0x1f]
[0.156000] pci 0000:00:0b.0: reg 14 32bit mmio: [Ox000060-Ox00001f]
[0.160000] pci 0000:00:0b.0: reg 32bit mmio pref: [0x000000-0x03ffff]
[0.160000] pci 0000:80:12.0: reg io port: [0x00-8x1f]
[0.160000] pci 0000:00:12.0: reg 14 32bit mmio: [0x000000-0x00001f]
[0.164000] pci 0000:00:12.0: reg 30 32bit mmio pref: [0x000000-0x03ffff]
[0.164000] pcl 0000:00:13.0: reg io port: [@xe0-0x1f]
[.164000] pci 0OEO:00:13.0: reg 14 32bit mmio: [0x000000-0x00001f]
[.168000] pcil 0000:00:13.0: reg 32bit mmio pref: [0x000000-0x03ffff]
[.168000] pci 0000:00:14.0: reg io port: [0x00-0x1f]
[.172000] pci 0OOO:00:14.0: reg 14 32bit mmio: [0x000000-0x60001f]
[.172000] pci 0000:00:14.0: reg 32bit mmio pref: [0x000000-0x03ffff]
[.172000] pci 0000:00:15.0: reg 32bit mmio pref: [0x000000-0x1Ffffff]
[.172000] pci 0OOO:00:15.0: reg 14 32bit mmio: [Ox000000-0x000fff]
[0.172000] pci 0000:00:15.0: reg 32bit mmio pref: [0x000000-0x00Ffff]
[0.176000] vgaarb: device added: PCI:0000:00:15.0,decodes=1o+mem,owns=none,l
ocks=none
[0.180000] pci 0000:00:0a.3: BAR 8: bogus alignment [@x1100-0x110f] flags Ox
1
[
[
[

coooQ0000Q@

1]
©.192000] cfg80211: Calling CRDA to update world regulatory domain
0.192000] switching to clocksource MIPS
0.196000] NET: Registered protocol family 2

Figure A-44:Emulation of the firmware (2 of 7)

37

. esslp@ubuntu: ~/workspace/embedtools/firmadyne

File Edit view Search Terminal Help

.196000] NET: Registered protocol family 2

.196000] IP route cache hash table entries: 2048 (order: 1, 8192 bytes)
.204000] Switched to NOHz mode on CPU #0

.212000] TCP established hash table entries: 8192 (order: 4, 65536 bytes)
.216000] TCP bind hash table entries: 8192 (order: 3, 32768 bytes)
.220000] TCP: Hash tables configured (established 8192 bind 8192)
.2240008] TCP reno registered

.228000] NET: Registered protocol family 1

.228808] PCI: Enabling device ©0080:00:0a.2 (0008 -> 0001)

.276000] squashfs: version 4.0 (2009/01/31) Phillip Lougher

.276000] Registering unionfs 2.6 (for 2.6.32.63)

.284000] JFFS2 version 2.2. (NAND) e 2001-2006 Red Hat, Inc.

.288000] ROMFS MTD (C) 2007 Red Hat, Inc.

.296000] msgmni has been set to 493

.3280008] alg: No test for stdrng (krng)

.392000] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 2

@

[N Rolofolooicoooleoloeo]

.396000] 1o scheduler noop registered

.400000] 1o scheduler cfq registered (default)

.400000] firmadyne: devfs: 1, execute: 1, procfs: 1, syscall: @

.408000] firmadyne: Cannot register character device: watchdog, 0xa, ©x82!
.420008] firmadyne: Cannot register character device: wdt, oxfd, exe!
.516000] PCI: Enabling device 0000:00:15.0 (0000 -> 0002)

.520000] cirrusfb 0000:00:15.0: Cirrus Logic chipset on PCI bus, RAM (4096
t exleeeeeee

.804000] Console: switching to colour frame buffer device 80x30

.856000] Serial: 8250/16550 driver, 4 ports, IRQ sharing enabled

.860000] serial8250.0: ttySe at I/O 6x3f8 (irq = 4) is a 16550A

.860000] console [ttys@] enabled, bootconsole disabled

.860000] console [ttyS®] enabled, bootconsole disabled

.864000] serial8250.0: ttySl at I/0 0x2f8 (irq = 3) is a 16550A

.864000] serial8250.0: ttysS2 at MMIO Ox1f0@e900 (irq = 18) is a 16550A
.880000] brd: module loaded

.888000] loop: module loaded

.896000] ata_piix 0000:00:0a.1: version 2.13

.896000] PCI: Enabling device 0000:00:0a.1 (0000 -> 0001)

.904000] PCI: Setting latency timer of device 0000:00:0a.1 to 64

.92€ scsi@ : ata_piix

GB Volum scsil @ ata_piix

L ©.93.20 atal: PATA max UDMA/33 cmd 8xi1fe ctl ox3f6 bmdma 0x10a0 irq 14

[0.936000] ata2: PATA max UDMA/33 cmd 8x170 ctl 0x376 bmdma ®x10a8 irq 15

[0.952000] NAND device: Manufacturer ID: ©x98, Chip ID: 0x39 (Toshiba NAND 1
28MiB 1,8V 8-bit)

[0.964000] flash size: 128 MiB

[0.964000] page size: 512 bytes

[0.964000] O0OB area size: 16 bytes

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
5
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

2000000000000

Figure A-45:Emulation of the firmware (3 of 7)

[esslp@ubuntu: ~/workspace/embedtools/firmadyne

File Edit View Search Terminal Help

0.964000] O0OB area size: 16 bytes

0.964000] sector size: 16 KiB

0.964000] pages number: 262144

0.964000] pages per sector: 32

0.964000] bus width: 8

0.964000] bits in sector size: 14

0.968000] bits in page size: 9

0.968000] bits in 00B size: 4

0.968000] flash size with ODB: 135168 KiB

0.968000] page address bytes: 4

0.968000] sector address bytes: 3

0.968000] options: @x62

0.976000] Scanning device for bad blocks

1.132000] Creating 11 MTD partitions on "NAND 128MiB 1,8V 8-bit":
1.144000] ©xP00EEEEOOREN-0XxEEPOOO100000 : "NAND simulator partition
1.152000] ©0x000000100000-0x000000200000 : "NAND simulator partition
1.164000] 0x000000200000-0x000000300000 : "NAND simulator partition
1.176000] ©x000EEO300000-0X0EE000400000 : "NAND simulator partition
1.188000] ©0x000000400000-0x000000500000 : "NAND simulator partition
1.196000] 0x00OEOE500000-0Xx000000600000 : "NAND simulator partition
1.200000] ©xPPEEER6000E0-0XEEE0OOTO00EO : "NAND simulator partition
1.200000] ©x000000700000-0x000000800000 "NAND simulator partition
1.200000] 0x000000800000-0Xx000000900000 : "NAND simulator partition
1.220000] ©x0P0EELE200000-0XEEE0ORa00000 : "NAND simulator partition
1.224000] ©0x000000200000-0x000008000000 : "NAND simulator partition
1.228000] Intel(R) PRO/100@ Network Driver - version 7.3.21-k5-NAPI
1.228000] Copyright (c) 1999-2006 Intel Corporation.

1.228000] el00@e: Intel(R) PRO/1060 Network Driver - 1.0.2-k2
.228000] ele@de: Copyright (c) 1999-2008 Intel Corporation.
.228000] pcnet32.c:v1.35 21.Apr.2008 tsbogend@alpha.franken.de
.228000] PCI: Enabling device 0000:00:0b.0 (0000 -> 0003)

.232000] PCI: Setting latency timer of device 0000:00:8b.0 to 64
.232000] pcnet32: PCnet/PCI II 79C970A at 0x1020, 52:54:00:12:34:56 assign
10.

.232000] eth®: registered as PCnet/PCI II 79C970A

.232000] PCI: Enabling device 0000:00:12.0 (0000 -> 0003)

.236000] PCI: Setting latency timer of device 0000:00:12.0 to 64

.236000] pcnet32: PCnet/PCI II 79C970A at 0x1040, 52:54:00:12:34:57 assign
10.

.240000] ethl: registered as PCnet/PCI II 79C970A

.240000] PCI: Enabling device 08600:00:13.0 (0000 -> 0603)

PCI: Setting latency timer of device 0000:00:13.0 to 64

pcnet32: PCnet/PCI II 79C970A at 0x1060, 52:54:00:12:34:58 assign

HOONOUVAWNRES

(<]

eth2: registered as PCnet/PCI II 79C970A
.248000] PCI: Enabling device 0800:00:14.0 (0000 -> 0603)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
a
[
[
[
[
e
[
[
[
[
e
[
[

RRORBRRRERBRORRRERRBORRRRRR

Figure A-46:Emulation of the firmware (4 of 7)

o esslp@ubuntu: ~/workspace/embedtools/firmadyne

File Edit View Search Terminal Help

[1.248000] PCI: Enabling device ooccoliFFRCICN(0000 -> 8003)

[1.256000] PCI: Setting latency timer of device 0000:00:14.0 to 64

[1.256000] pcnet32: PCnet/PCI II 79C970A at 0x1080, 52:54:00:12:34:59 assign
ed IRQ 11.

1.256000] eth3: registered as PCnet/PCI II 79C970A

1.256000] pcnet32: 4 cards_found.

1.260000] PPP generic driver version 2.4.2

1.260000] PPP Deflate Compression module registered

1.280000] atal.®@1: NODEV after polling detection

1.284000] atal.e®@: ATA-7: QEMU HARDDISK, 2.5+, max UDMA/100

1.284000] atal.e0: 2097152 sectors, multi 16: LBA48

1.292000] ata2.@1: NODEV after polling detection

1.292000] ata2.00: ATAPI: QEMU DVD-ROM, 2.5+, max UDMA/108

1.296000] ataz2.00: configured for UDMA/33

1.296000] atal.00: configured for UDMA/33

1.316000] scsi 0:0:0:0: Direct-Access ATA QEMU HARDDISK 2.5+ PQ
@ ANSI: 5

1.320000] scsi 1:0:0:0: CD-ROM QEMU QEMU DVD-ROM 2.5+ PQ
© ANSI: 5

1.328000] sd 0:0:0:0: [sda] 2097152 512-byte logical blocks: (1.07 GB/1.00
iB)

1.328000] - [sda] Write Protect is off

1.328000] :0: [sda] Mode Sense: 80 3a 00 00

1.328000] B [sda] Write cache: enabled, read cache: enabled, does
't support DPO or FUA

1.332000] sda: sdail

1.356000] sd ©:0:0:0: [sda] Attached sSCSI disk

1.364000] PPP MPPE Compression module registered

1.364000] NET: Registered protocol family 24

1.364000] PPPoL2TP kernel driver, V1.0

1.368000] tun: Universal TUN/TAP device driver, 1.6

1.368000] tun: (C) 1999-2004 Max Krasnyansky <maxk@qualcomm.com>

1.372000] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
1.372000] ohci_hcd: USB 1.1 'Open' Host Controller (OHCI) Driver

1.380000] uhci_hecd: USB Universal Host Controller Interface driver
1.384000] PCI: Setting latency timer of device 0000:00:0a.2 to 64

1.384000] uhci_hcd 0060:00:0a.2: UHCI Host Controller

1.388000] uhci_hcd 0000:00:0a.2: new USB bus registered, assigned bus numbe

1.388000] uhci_hcd 00O0:00:0a.2: irg 11, io base 6x00001000
1.396000] usb usbl: configuration #1 chosen from 1 choice
1.400000] hub 1-8:1.0: USB hub found

1.400000] hub 1-0:1.8: 2 ports detected

1.404000] Initializing USB Mass Storage driver...

1.408000] usbcore: registered new interface driver usb-storage
1.408000] USB Mass Storage support registered.

Figure A-47:Emulation of the firmware (5 of 7)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
G
[
[
[
n
[
L
[
[
[
[
[
[
[
[
[
[
[
r
L
[
[
[
[
[
[

(> esslp@ubuntu: ~/workspace/embedtools/firmadyne

File Edit View Search Terminal Help

.408000] USB Mass Storage support registered.

.412000] serio: 18042 KBD port at 0x60,0x64 irq 1

.412000] serio: 18042 AUX port at Ox60,0x64 irq 12

.416800] mice: PS/2 mouse device common for all mice

.420000] rtc_cmos rtc_cmos: rtc core: registered rtc_cmos as rtco

.420000] rtcO: alarms up to one day, 242 bytes nvram

.420000] i2c /dev entries driver

.420000] piix4_smbus 0000:00:0a.3: SMBus Host Controller at 8x1180, revisi

[y

R

.420000] sdhci: Secure Digital Host Controller Interface driver
.424000] sdhci: Copyright(c) Pierre Ossman
.432000] usbcore: registered new interface driver hiddev
.436000] usbcore: registered new interface driver usbhid
.436800] usbhid: v2.6:USB HID core driver
.440000] Netfilter messages via NETLINK v0.30.
.440000] nf_conntrack version 0.5.0 (3949 buckets, 15796
.444000] ctnetlink v0.93: registering with nfnetlink.
.448000] IPv4 over IPv4 tunneling driver
.448000] GRE over IPv4 tunneling driver
.456000] ip_tables: (C) 2000-2006 Netfilter Core Team
.460000] arp_tables: (C) 2002 David S. Miller
.460000] TCP cubic registered
.460000] Initializing XFRM netlink socket
.460000] NET: Registered protocol family 10
.468800] ip6_tables: (C) 2800-2806 Netfilter Core Team
.472000] IPv6 over IPv4 tunneling driver
.476000] NET: Registered protocol family 17
.480000] Bridge firewalling registered
.480000] Ebtables v2.0 registered
.488000] 802.1Q VLAN Support v1.8 Ben Greear <greearb@candelatech.com>
.488000] ALl bugs added by David S. Miller <davem@redhat.com>
.492800] 1ib80211: common routines for IEEE862.11 drivers
.492000] 1ib86211 crypt: registered algorithm 'NULL'
1.500000] rtc_cmos rtc_cmos: setting system clock to 2022-05-08 02:18:08 UT
(1651976288)
1.524800] input: AT Raw Set 2 keyboard as fdevices/platform/i8842/serio8/in
put/inpute
[1.736000] input: ImExPS/2 Generic Explorer Mouse as /devices/platform/i8042
/seriolfinput/inputil
.760000] EXT2-fs warning: mounting unchecked fs, running e2fsck is recomme

g

[
[
[
[
[
[
[
[
o]
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
c
[

.764800] VFS: Mounted root (ext2 filesystem) on device 8:1.

.768800] Freeing prom memory: 956k freed

.796000] Freeing unused kernel memory: 220k freed

.904000] firmadyne: sys_reboot[PID: 1 (init)]: magicil:feeldead, magic2:281
cmd: 0

Figure A-48: Emulation of the firmware (6 of 7)

2.61566@] firmadyne: do_execve: [firmadyne/console
2.020000] OFFSETS: offset of pid: ©x100 offset of comm: @x1fe@

I |
I/
I 1_

I

N
-

___2020_WYZE_CAM_V3_@HUALAI _____
mount: mounting /dev/mtdblock3 on /system failed: Invalid argument

Wcv3 login: |

Figure A-49: Emulation of the firmware (7 of 7)

41

The emulation will mount the filesystem onto your VM. You may search the filesystem manually,
and change any value you wish. Just use chmod to change the permissions first. This is what
we did with the shadow file. The shadow file contains the password hash for each user. By
changing the hash, we can control the firmware for debugging sessions and further analysis.
This activity is left for future action. Figure 47 shows the command-line perl script used to create
the hash (SHA512 with ‘wyzecam3’ as salt).

-, .

esslp@ubuntu: ~
File Edit View Search Terminal Help

esslp@ubuntu:~$ perl -e 'print crypt("password","\$6\Swyzecamv3\$") . "\n

S6Swyzecamv3SKll. TcfGovk80oB6Va0zD /BwzUIIKITLXulKTLwn4fo/X89jclDemXUaZc.mALbOJEwWR
860bP6qKcB8Idi6NgP1
esslp@ubuntu:~$

Figure A-50: Creating a password using SHA512

The output of the perl script, starting at $6 and ending at the newline (*...P1’), was copied and
inserted into the shadow file. The old root hash was retained and renamed ‘oldroot’. The
shadow file was saved to its original location (Figure A-51).

o shadow (1.1 GB Volume ~/workspacefembedtools/firmadyne/scratch/4/imagefetc) - gedit

Open ~ M

1root $65wyzecamv3sSKll, TcfGoVkBoB6Va0ozD /BwzUIIKITIXu1KTLwn4fo/XB9jclDemXUazZc . mALbOJEWRB60bP6QKCBEBId16NgP1:0:8:99999:7:
0 gothS65wyzecamv3S8gyTESAkm1dTwh12Eup5SMMcXQwuAln1FsSREQLUWBdZGo1b1pGRIgtSieTIO2VPeFP9f4DodbIt2ePOLZWPONIO:0:0:99999: ?
Termmal

Figure A-51: Updating the shadow file
For the new password to work, restart the emulation. Then type in ‘root’ for username, and your

new password (we used ‘password’). We gained root access to the emulated firmware, shown in
Figure A-52.

2020 _WYZE_CAM_V3_Q@HUALAI_

mount: mounting /dev/mtdblock3 on [system failed: Invalid argument

WCV3 login: root
Password:
May 8 02: 30 22 login[59]: root login on 'console'

Figure A-52: Root access achieved in the emulation

This is as far as we got with the emulation. Future efforts to analyze the firmware using
emulation are left for future action.

42

In the meantime, we’ve provided the hash to a program called hashcat. Hashcat is a password
cracking utility freely available. We need to tell hashcat the hash format (1800 UNIX/SHA512)
and a mode. The mode we chose was brute force with a rule set. The rule set developed was
based on previous Wyze camera passwords that are publicly known. The three passwords are:
‘WYom2020’, ‘WYom20200’, and ‘ismart12’ for user root. We setup a ruleset which requires a
lowercase or uppercase ‘w’, and another rule which requires the last two characters to be a
number. We also told hashcat to specifically try some other characteristics, including: the year
2020 or 2021 on the end; the year 2020 or 2021 on the end followed by another number; and
look for occurrences of ‘v3’ somewhere in the string.

The PC on which it is running has an AMD 1700 microprocessor (first generation Ryzen 7), with
a separate Radeon RX5700XT graphics card (generation 5). The host operating system is
openSuse ‘Tumbleweed’. The amdgpu driver was installed, needed for hashcat to recognize the
graphics card. Different versions of Ubuntu (Ubuntu 14, 16 and 18; the latest Kali version; the
latest popOS). Also attempted was using a laptop, and leveraging the onboard discrete NVIDIA
graphics. None of these configurations didn’t work (the libraries required for the driver were
either deprecated or not available to that version of Ubuntu), and the laptop overheated. Cloud
GPUs were also considered, however they were too expensive. The amdgpu drivers are
compatible with three flavors of Linux: Ubuntu, Red Hat, and OpenSuse. We downloaded the
latest OpenSuse (Tumbleweed) operating system image and installed it. We then installed the
amdgpu drivers. Even though some warning were issued during the install (again, deprecated
libraries), hashcat recognized the GPU (type ‘hashcat -I’ into the command line)!

Thus far, hashcat has been running for more than 7 days. It has not yet cracked the password.
Occasional crashes have occurred, however hashcat can be configured to resume where it left
off.

Linux Kernel Static Source Code Analysis

We acquired the latest version of the T31 chip’s SDK on Github. We also located the latest
DLinux kernel source code from the WyzeCam website for the V3 camera and downloaded that
as well (Figures B-1 and B-2).

43

¥ main ~ | Ingenic-SDK-T31-1.1.1-2020 / / Go to file

e cgrrty Decompress the source code E 2021 {E) History

Documentation

arch

block

crypto

drivers

firmware

fs

include

init

Figure B-1: Ingenic T31 SDK

Open Source Software

@ Matt Schulte

Wyze Labs' products and services include open source software developed by third parties. Listed below
are the open source software packages used in our products and services, including their version number,
copyright, and applicable license terms. This list may be updated at any time by us with or without notice.

THIS LIST OF OPEN SOURCE SOFTWARE IS PROVIDED "AS 1S." WYZE LABS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS LIST OR ITS ACCURACY OR COMPLETENESS, OR
WITH RESPECT TO ANY RESULTS TO BE OBTAINED FROM USE OR DISTRIBUTION OF THIS LIST. BY USING OR
DISTRIBUTING THIS LIST, YOU AGREE THAT IN NO EVENT WILL WYZE LABS BE HELD LIABLE FOR ANY
DAMAGES WHATSOEVER RESULTING FROM THE USE OR DISTRIBUTION OF THIS LIST, INCLUDING, WITHOUT
LIMITATION, ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL ©OR OTHER DIRECT OR INDIRECT DAMAGES.

Open Source Software Disclosure for Wyze Labs’ Products and Services

Wyze Cam Linux v12.6.35

RTSP
Wyze Cam v3:
. . Source
Name Version License
Code
2013.07
U-Boot (modified) GPLv2 Link
31014
Linux (modified) GPLv2 Link

Figure B-2: WyzeCam V3 Source code

The WyzeCam source code indicated that the Linux Kernel version is 3.10.14 and the T31 Chip
was determined to be 3.10.14 as well during the firmware analysis. We used the CVE Details
(Figures 3-B and 4-B). data source website to look up all CVEs related to the 3.10.14 kernel.
The site listed 48 potential CVEs for this kernel version, however we focused only on the most

44

critical CVEs based on CVSS scores due to time constraints presented to us and the large

amount of source code that needed to be inspected. The threshold for the cutoff was a CVSS
score of 4.9 which still allowed us to inspect 17 CVEs.

CVE Details —
The ultimate security vulnerability datasource

tsecdb.com

CVSS Scores Greater Thami 0 1 2 2 4 5 6 7 &8
Sort Results 8y

umber Descanding CVE Humbsr Ascanding CVSS Score Descending Number OF Exploits Descanding

Copy Resuy wnloed Results
CVE ID CWEID #of Exploits Vulnerability Types) Publish Update: Score Gained Access, Access Complexity Authentication Conf. Integ. Avail.
Date Date Level
1 CVE-2014-5050 17 Dos 2014-11-30 2015-06-04 = 4.9 None Local Low Not required None None Complete

The do_double_fault function in arch/x86/kernel/traps.c in the Linux kernel through 3.17.4 does not properly handle faults associated with the Stack Segment (SS) segment register, which allows local users to cause a
denial of service (panic) via a modify_ldt system call, as demonstrated by sigreturn_32 in the linux-clock-tests test suite.

2 CVE-2014-8989 264 Bypass 2014-11-30 2017-01-03 4.6 None Local Low Not required Partial Partial Partial
The Linux kernel through 3.17.4 does not properly restrict dropping of supplemental group memberships in certain namespace scenarios, which allows local users to bypass intended file permissions by leveraging a
'QSIX ACL containing an entry for the group category that is more restrictive than the entry for the other category, aka a "negative groups” issue, related to kernel/groups.c, kernel/uid16.c, and
kernel/user_namespace.c.

3 CVE-2014-8884 119 DoS Overflow +Priv 2014-11-30 2018-01-05

6.1 None Lacal Low Not required Partial Partial Complete

Stack-based buffer overflow in the ttusbdecfe_dvbs_diseqc_send_master_cmd function in drivers/media/usb/ttusb-dec/ttusbdecte.c in the Linux kernel before 3.17.4 allows local users to cause a denial of service

Vendor Cuss Scores (system crash) or possibly gain privileges via a large message length in an ioctl call.

Product

froducts 4 CUE-2014-8133 264 Bypass 2014-12-17 2015-12-24 BN None Lacal Low Not required None partial None

Product Cuss Scores

e arch/x8 in the Thread Local Storage (TLS) implementation in the Linux kernel through 3.18.1 allows local users to bypass the espfix protection mechanism, and consequently makes it easier for local users
to by R protection mechanism, via 3 crafted application that makes = set_taread_srea system call and later reads 3 16-bit value.

Microsoft Bu
Bugtrag Entries

-2014-7842 362 Dos 2014-11-30 2017-01-03 | 2.9 None Lacal

Low Nt required None None Complete

Race condition in arch/x86/kvm/x86.c in the Linux kemel before 3.17.4 allows auest OS users to cause a denial of service (quest OS crash) via a crafted application that performs an MMIO transaction or a PIO

Figure B-3: CVE page filtered for Linux Kernel 3.10.14

Vulnerability Details : CVE-2013-7267

The atalk_recvmsg function in net/appletalk/ddp.c in the Linux kernel before 3.12.4 updates a certain length value without ensuring that an associated data structure has been initialized, which
allows local users to obtain sensitive information from kernel memory via a (1) recvfrom, (2) recvmmsg, or (3) recvmsg system call.
Publish Date : 2014-01-06 Last Update Date : 2014-03-16

Collapse All Expand Al Select Select®&Copy Scroll To Comments External Links
Search Twitter Search YouTube Search Google

- CVSS Scores & Vulnerability Types

CWSS Score 4.9

Confidentiality Impact Complete (There is total information disclosure, resulting in all system files being revealed.)
Integrity Impact None (There is no impact to the integrity of the system)

Availability Impact None {There is no impact to the availability of the sys

Access Complexity Low (Specialized access conditions or extenuating circumstances do not exist. Very little knowledge or skill is required to

exploit.)
Authentication Mot required (Authentication is not required to exploit the vulnerability.)
Gained Access MNone
Vulnerability Type(s) Obtain Information
CWE ID 20

- Related OVAL Definitions

Title Definition Id Class Family

Figure B-4: Page for CVE-2013-7287 as a sample

Before performing the actual code analysis, a diff was run between the T31 kernel files and the
WyzeCam Kernel files in order to measure the differences between the two as well as check if
any of the functions affected by CVEs had been modified between the two (Figure B-5). None of
the differences found from the diff were related to the CVEs we inspected. This indicates that for
any CVEs that were not patched and if the WyzeCam V3 T31 chip were to be updated with a
newer version, it would still not address any CVEs that had not been patched.

45

Figure B-5: Sample output from diff.

The source code analysis starts with identifying the patch for each CVE. The patch is located at
the bottom of each CVE Details entry in the form of a github link to the commit that addresses
the CVE (Figure B-6). The commits show the code changes for each file modified to address the
CVE (Figure B-7). We first check the name of the function that is modified and see if it appears
in the diff. We compared the patched files against the files in the T31 SDK Kernel directory and
the WyzeCam kernel source files. If all of the necessary code changes from the patches exist,
then it is considered fully patched. If they do not, then we determine to what extent it has been
patched and whether or not the vulnerability is a threat to the WyzeCam device.

http://secunia.com/advisories/56035
SECUNIA 568036

http://secunia.com/advisories/55882
SECUNIA 55882

https://github.com/torvalds/linux/commit/f3d3342602f8bcbf37d7c46641cb3bca7o18eblc CONFIRM

http://www.openwall.com/lists/oss-secunty/2013/13/31/7

MLIST [oss-security] 20131231 Re: CVE reguest: Linux kernel: net: memaory leak in recvmsg handlermsg_name & msg_namelen logic

https://bugzilla.redhat.com/show bug.cgi?id=1039845 CONFIRM

http://www.kernel.org/pub/linux/kernel/v3.x/Changelog-3.12.4 CONFIRM

http:/fgit.kermel.org/?p=linux/kernel/git/torvalds/linux-2.5.git;a=commit ;h=f3d3342602f8bcbf37d7c45541cbSbea7518ebic CONFIRM

http://www.ubuntu.com/usn/USN-2128-1
UBUNTU USN-2128-1

http://www.ubuntu.com/usn/USN-2139-1
UBUNTU USN-2135-1

Figure B-5: Link to commit that patches CVE

46

msg->msg_flags |= MSG_TRUNC;

Figure B-6: Code changes in commit. Red means removed, Green (not shown) means added.

Out of the 17 CVEs we inspected, only one has been fully patched: CVE-2012-6638 [25] which
has a CVSS score of 7.8. This was the highest rated CVE for this kernel version due to the
simplicity of the exploit and how easy it is to reproduce on a vulnerable system by anyone with
minimal skill level required. The exploit involves flooding the target system with a specific
combination of packets (SYN+FIN) until it is rendered completely unavailable, causing a severe
denial of service attack (DoS). (Table B-1)

CVE CVSS Score | Description
CVE-2012-6638 78 Allows attacker to execute DoS attack by flooding target
[25] ' with SYN+FIN packets [25]

Table B-1: Patched CVEs

10 of the 17 CVEs we inspected were not patched nor appeared to be modified in any way. 3 of
them are not applicable however as they require certain functions and systems that the
WyzeCam does not utilize, such as KVM [33], Phonet [35], and L2TP [34]. 5 of the applicable
CVEs [28] [29] [30] [31] [32] requires local network access at the minimum to the device. This
means that an attacker would only be able to utilize these vulnerabilities in targeted attacks
where they have access to the network. This limits targets to home networks or small private
businesses that cannot afford better security camera options. So as long as the users practice
good network security, these CVEs cannot be exploited. The remaining 2 CVEs [26] [27] that
are applicable and can be exploited remotely involve modifying properties of packets and share
the third highest CVSS score of 7.1. (Table B-2)

47

CVE CVSS Score | Description

CVE-2013-3563 71 Allows remote attackers to perform DoS attacks using
[26] ' large IPv6 UDP packet sizes [26]

i i Allows remote attackers to perform DoS attacks using
CVE-2013-4348 71 small values in the IHL field of a packet with IPIP
[27] :
encapsulation. [27]

Allows local users to obtain sensitive info from kernel
CVE'Z[g;?JZ% 4.9 stack memory using IPV4/V6 systems calls: recvmsg,
recvfrom, and recvmmsg [28]

Allows local users to obtain sensitive info from the kernel
CVE-2£:)?-7281 4.9 stack memory using 802.15.4 (wireless) system calls:
recvmsg, recvfrom, recvmmsg [29]

CVE-2013-6378 Allows local users to perform DoS attack by using root
4.4 s , :
[30] privileges for a zero-length write operation [30]
CVE-2013-4515 AIIow§ Ilchl users to leak kernel information by exploiting
4.9 an uninitialized array through

[31] IOCTL_BCM_GET_DEVICE_PRINTER system call [31]

i i Allows local users to leak kernel information by exploiting
CVE 2[(;)2,12:]3 4516 4.9 an uninitialized array through TIOCGICOUNT system call
[32]
CVE-2013-4587 79 KVM vulnerability. NOT APPLICABLE [33]
[33] '
CVE-2013-7264 49 L2TP vulnerability. NOT APPLICABLE [34]
[34] '
CVE-2013-7265 Phonet Packet protocol vulnerability. NOT APPLICABLE
[35] 9 |

Table B-2: CVEs the WyzeCam kernel has not been patched for

7 of the 17 vulnerabilities are considered not patched however, there does appear to be signs of
modifications in the functions in the kernel source code related to these CVEs. The amount of
changes made is minimal and it is unknown what these modifications are for. However, given
the large number of source code files that had to be changed to patch the CVE, it is unlikely that
these modifications address the CVE. Fortunately, only one CVE can potentially impact this
device. With a CVSS score of 4.9, CVE-2013-7270 [41] allows local users to obtain sensitive
information from kernel memory through recvfrom, recvmmsg, and recvmsg system calls
through raw packets (af_packet). The other CVEs cover networking protocols [36] [37] [38] [39]
[40] that would not be used by the device. (Table B-3)

48

CVE CVSS Score | Description
CVE-2013-7270 Allows local users to obtain sensitive information from
[41] 4.9 kernel memory through recvfrom, recvmmsg, recvmsg
system calls related to raw packets (af_packet) [41]
CVE-2013-7266 49 ISDN Protocol. NOT APPLICABLE [36]
[36] '
CVE-2013-7267 49 AppleTalk Protocol. NOT APPLICABLE [37]
[37] '
CVE-2013-7268 49 IPX Protocol. NOT APPLICABLE [38]
[38] '
CVE-2013-7269 49 Netrom Protocol. NOT APPLICABLE [39]
[39] '
CVE-2013-7271 49 X25 Protocol. NOT APPLICABLE [40]
[40] '

Table B-3: Modified CVEs

The ability to exploit these vulnerabilities requires knowledge of the device's existence and in
most cases also requires local access to the network. For several of these vulnerabilities,
significant modifications would have to be made to the firmware, such as installing utilities that
can take advantage of one of the many unpatched/modified CVEs, followed by the reselling of
the device to potential targets. Considering this, the threat of the CVEs that were covered in this
code inspection is low-to-medium and an attacker would have an easier time loading their own
custom software into the camera before reselling the device to potential targets.

Firmware Analysis

We downloaded the latest version of Wyze camera firmware (3_4.36.8.32). The downloaded
firmware is a zipped file. On running “binwalk -e” on the zip file, it didn’t mount the file systems,
as they were xz compressed. On manually extracting the zipped folder using nautilus file
explorer, we can find one empty folder and a blob. The output of running binwalk on blob is

49

show in figure C-1

binwalk demo_wcv3.bin

image name: "jz_fw"

image type: Firmware Image
0S: Linux

CPU: MIPS

image name: "Linux-3.10.14 isvp swan_1l.8 "
image type: 05 Kernel Image

0S: Linux

CPU: MIPS

Squashfs filesystem 1 : little endian, version 4.9, compression:xz, size: 3853788 bytes, 384 inodes, blocksize: 131872 bytes

Squashfs filesystem2 : 1little endian, version 4.0, compression:xz, size: 3815722 bytes, 194 inodes, blocksize: 131872 bytes, created

»

file demo_wcv3.bin

demo_wcv3.bin: u-boot legacy ulmage, jz_fw, Linux/MIPS, Firmware Image (Mot compressed), 9846784 bytes, Thu Feb 17 ©2:13:24 2022, Loa

»

Figure C-1: Binwalk output

From the binwalk output, we can infer that the bootloader is Bootloader - U Boot legacy uimage,
and the firmware image is jz_fw. They are packed without any compression techinques. The OS
kernel image is Linux-3.10.14__isvp_swan_1.0__ and it is compressed using LZMA
compression technique. The instruction set is mips and the system is little endian. There are 2
file system images, both are XZ compressed and are little endian. Binwalk with -e flag didn't set
up the file systems. On running binwalk with no flags, it gave the position of each component
within the binary, so it is possible to cut each file system image from blob using the dd command
line tool. We can use “sudo mount” to mount on the file system, from the file system image.

File system 1 :

On mounting we can see that the file directory has a linux structure as shown in the figure 2. On
mounting the file system image using “sudo mount” the file system is read only. There are a total
of 349 files in the directory.

50

L
L
L
L
L
L

aback bin configs dev etc kback

l - - - el el
lib media mnt opt proc root

l - - - l
run system thirdlib tmp

L
i :E

usr var linuxrc

Figure C-2: Structure of file system 1

Once the file system image is mounted we can run the scanning tools on it. On running
trommel, we were able to find that the firmware is using BusyBox v1.33.1. It is associated with
18 CVEs (CVE-2018-0099, CVE-2017-5671 ,CVE-2017-16544 ,CVE-2017-15874
,CVE-2017-15873, CVE-2017-14116 ,CVE-2017-14115 ,CVE-2016-6301 ,CVE-2016-5791
,CVE-2016-214 ,CVE-2016-2147 ,CVE-2014-9645 ,CVE-2013-1813 ,CVE-2011-5325
,CVE-2011-2716, CVE-2006-5050 ,CVE-2006-1058 ,CVE-2005-2136) according to trommel
false positives may exist. On running firmwalker, we were able to find that there is no trace of
SSH, SSL, database, openSSL related files in this file directory. There were 5 IP addresses in
the filesystem (4.36.8.32 ,1.2.3.2 ,4.3.24.7 ,3.4.4.3 ,8.8.8.8), but on testing them, they were not
vulnerable IP addresses. On etc folder, we can find a shadow file. Shadow file had the root
user's hash.

root:6wyzecamv3$8gyTEsAkm1d7wh12Eup5MMoxQwuA1n1FsRtQLUWSdZGo1b1pGRIg |

tSieTI02VPeFP9f4Dodblt2ePOLzwPOWI0:0:0:99999: 7:::

Figure C-3: Hash of root password

The hash has $6 in the beginning as shown in figure 3, this shows it is hashed using SHA512
hashing algorithm. Following it, there is wyzecmav3, which according to the format of SHA512
hash algorithm is the salt used to hash the password [42]. Following it we have the hash value
of salted password. The numbers following the hash tell other details like time to reset,
password expiry time etc, which are of no interest currently.

File system 2:
On mounting we can see that the file directory has a linux structure as shown in the figure 4. On

mounting the file system image using “sudo mount” the file system is read only. There are a total
of 169 files in that directory.

51

>

Upgrade

Figure C-4: Structure of file system 2

On running trommel and firmwaker on the mounted file system, binary files cacert.pem,
hi_client, and iCamera seemed promising. On analyzing the hl_client file in the cutter tool, it can
be seen in figure 5 and figure 6 that fgets and strcpy are used in the binary. They can lead to
dangerous consequences, so it is better to avoid them.

Figure C-5: fget() function

lui t7

lw t9
jr t9
addiu t8

.

Figure C-6: strcpy() function

Changing root hash and repacking the firmware:

When a file system image is mounted using ‘sudo mount’, the file system is read only and
cannot be edited. To get around this, we can use the sasquatch tool. On running the sasquatch
tool on file system image, it creates a directory from the file system image, which is read and
write-able. Since we know the type of hashing algorithm (SHA512) and the salt (wyzecamv3)

52

used to produce the hash, we can pick a password of our choice, find the corresponding salted
hash value and then rewrite it in the shadow file. We have taken ‘esslp’ to be the password, and
replaced the original hash with the salted hash of ‘esslp’. The salted hash of esslp is shown in
figure 7.

esslp@ubuntu:~/workspace/embedtools/squashfs-root/etcS cat shadow
root:565wyzecamv3$Jgd8pQHFFZxPg5C. alhN17sKDeU4alBc8IpNhPk/1CFsNcvogroptl66 jPO0au4IK2NRgxvQvHFqgz LCAGhty1:0:0:99999:7:::

esslp@ubuntu:~/workspace/embedtools/squashfs-root/etc$S

Figure C-7: Salted hash of password ‘esslp’

To recreate the filesystem image we have used a command line utility mksquashfs. The output
of the running the tool on the modified file directory is shown in figure 8

(embedtools) esslp@ubuntu:~/workspace/embedtools/firmware-mod-kit/other-scripts$ mksquashfs /fhomefess
1p/workspace/embedtools/squashfs-root fhome/esslp/wyze-cam-firmware-analysis/firmware recreate/filesy
sl.sqsh -comp xz -b 131872
Parallel mksquashfs: Using 2 processors
Creating 4.0 filesystem on fhome/esslp/wyze-cam-firmware-analysis/firmware_recreate/filesysil.sqsh, bl
ock size 13107

-1 136/136 100%

Exportable Squashfs 4.8 filesystem, xz compressed, data block size 131072
compressed data, compressed metadata, compressed fragments, compressed xattrs
duplicates are removed

Filesystem size 3763.47 Kbytes (3.68 Mbytes)

32.94% of uncompressed filesystem size (11424.91 Kbytes)

Inode table size 2176 bytes (2.12 Kbytes)

15.31% of uncompressed inode table size (14212 bytes)

Directory table size 3230 bytes (3.15 Kbytes)

52.95% of uncompressed directory table size (6100 bytes)
of duplicate files found 2
of inodes 384
of files 64
of fragments 14
of symbolic links 287
of device nodes ©
of fifo nodes @
of socket nodes ©
of directories 33
of ids (unique uids + gids) 1
of uids 1
esslp (1000)
of gids 1
esslp (1000)
(embedtools) esslp@ubuntu:~/workspace/embedtools/firmware-mod-kit/other-scripts$ I

Figure C-8: blob of modified file system 1

We can recreate the firmware back, using command line utility dd and cat. From the binwalk
output as shown in figure 9,we can see that the file system 1 starts from location 2031680
(decimal).

(embedtools) esslp@ubuntui~/
DECIMAL HEXADECIMAL

“uInage header, header stze
5A, 0S: Linux, CPU: MIPS, image type: Flrnware Image, compression type none, mage nam
64 x40 ulnage header, header size: 64 bytes, header CRC: OxA3BCT.
CRC: OXBOB2FE38, 0S: Linux, CPU: MIP! e type: 05 Kernel Inage, compression type: lzm
5 5 N atett :

2031680 0x1F0040
0x5C0040

Flgure C 9: Blnwalk output of modified firmware

53

Using dd command, we can copy everything before file system 1 into a new file, this file now
contains binary of bootloader, firmware and OS. Similarly using dd we copy file system 2 from
offset 6029376 into a file, which now will contain an image of file system 2. We have all the 3
parts in the required format as shown in image 10 , we can combine them using the cat
command line tool and write it into a new file, which will be the modified firmware image.

@ © @ esslp@ubuntu: ~/wyze-cam-firmware-analysis/firmware_recreate

esslp@ubuntu:~/uyze-cam-firm e-a s [fi e_re ate$ file img

img: u-boot legacy uImage, jz_fw, Linux/ B mage (Not compressed), 9846784 bytes, Thu Feb 17 82:13:24 Load Address: 0x00
000800, Entry Point: ©x00000000, Header CR! @x75A4CF47, Data CRC: 0x1B15405A

esslp@ubuntu:~/uyze-cam-firm e-a is/

filesysl.sqsh: Squashfs filesystem,

:15:41 2022

esslp@ubuntu:

filesys2: Squas

4 2022

esslp@ubuntu:

Figure C-10: Details of individual blobs

The modified firmware has same format as the original format, as shown in figure 11

(embedtools) esslp@ubuntu:~/y

DECIMAL HEXADECIMAL DESCRIPTION

) uImage header, header size bytes, header CRC: 0Xx75A4CF47, created: 2022-02-17 02:13:24, image size: 9846784 bytes, Data Address: 0xe, Entry Point: 0x0, data CRC: 0x1B1540
5A, 0S: Linux, CPU: MIPS, image type: Firmware Image, compression type: none, image nam "

64 uImage header, header size: 64 bytes, header CRC: 6xA3BC7407, created: 2021-07-02 12:31 mage size: 1897077 bytes, Data Address: 0x80010000, Entry Point: ©x80416900, data
CRC: BXBOB2FE38, 0S: Linux, CPU: MIPS, image type: 0S Kernel Image, compression type: lzma, image name: "Linux-3.10. vp_swan_1.0__"

128 0x80 LZMA compressed data, properties: x5D, dictionary size: 67108864 bytes, uncompressed size: -1 bytes

2031680 0x1F040 squashfs filesystem, little endian, version 4.6, compressi size: 3853788 bytes, 384 inodes, blocksize: 131072 bytes, created:

6029376 0X5C0040 squashfs filesystem, little endian, version 4.6, compression: size: 3815722 bytes, 194 inodes, blocksize: 131072 bytes, created:

WCV3 K 220503_202956 firmware_recreate/ README.nd walkthrough.md wyme_unzip/
(embedtools) esslp@ubunt
(embedtools) esslp@ubunt
filesysi.sqsh filesys2
(embedtools) esslp@ubuntu:

DECIMAL HEXADECIMAL DESCRIPTION

o uInage header, header bytes, header CRC: 6x75A4CFA7, created: 2022-82-17 02:13:24, image size: 9846784 bytes, Data Addre x0, Entry Point: @x0, data CRC: 6x1B1540
5A, 0S: Linux, CPU: MIPS, image type: Firmware Image, compression type: none, "jz_fu"

64 x4 ulnage header, header size: 64 bytes, header CRC: 6 , created: 202 g x80010000, Entry Point: 0x86416900, data
CRC: OXBOB2FE38, 0S: Linux, CPU: MIPS, image type: 0S Kernel Image, compression type: lzma, image name: "Linux-3.10.

128 0x80 LZMA compressed data, properties: ©x5D, dictionary size: 67108864 bytes, uncompressed siz

2031680 0x1F0040 squashfs filesystem, little endian, version 4.6, compressi size: 3853792 bytes, 384 s, blocksize: 131672 bytes, created: 20
5886016 0x590040 squashfs filesystem, little endian, version 4.6, compression:xz, size: 3815722 bytes, 194 inodes, blocksize: 131072 bytes, created: 20

Figure C-11: comparison of original and modified firmware image

54

iCamera Analysis

The iCamera binary is of interest to us because it is one of the few custom binaries executed at
the startup of the Wyze Cam V3. The idea is to perform static analysis on the iCamera binary in
the hope of finding possible security vulnerabilities. The methodology that we take in this project
is to search for commonly vulnerable libc functions and check if they are used safely. In this
section we explore the iCamera binary and outline possible vulnerable function calls that an
attacker could use to exploit the Wyze Cam V3.

S ls

§ file ./bin/iCamera

./binfiCamera: ELF 32-bit LSB executable, MIPS, MIPS32 rel2 version 1 (SYSV), dynamically linked, interpreter flib/ld-uClibc.so0.@, stripped
7 $

Figure D-1: Running file command on iCamera

The iCamera binary is located in the bin directory of the second squashfs filesystem.

B S cat .finitfapp_init.sh | grep -C 10 iCamera
mkdaemon 20 assis [system/bin/assis
#/system/binfassis > fdev/null 2>&1 &
#while [true]; do
pidof assis = Jfdev/null
if [$? -eq 0]; then
break;

fi

#done

mkdaemon 20 hl_client /system/bin/hl _client
mkdaemon 2@ sinker /system/bin/sinker
mkdaemon @ /system/bin/

mkdaemon 20 dumpload /system/bin/dumpload
mkdaemon -1 timesync /system/bin/timesync

mkdaemon @ audiocardprocess [system/bin/audiocardprocess

#/system/binfassis &
#/system/binfhl _client &
#/system/bin/sinker &
#/system/bin/ &

sleep 0.5

echo "#EaEHHEEHH T TE "
echo "# IS DEBUG STATUS #"
echo "#HHHHHHREHREHHEHEEE

$

Figure D-2: The app_init.sh startup script

The iCamera binary is executed at startup by the Wyze Cam V3 in the ./init/app_init.sh script.

55

S head -n 40 ./init/app_init.sh
#!/bin/sh
mkdaemon() {
dmon options
--stderr-redir Redirects stderr to the log file as well
--max-respawns Sets the number of times dmon will restart a failed process
--environ Sets an environment variable. Used to remove buffering on stdout

dslog options
--priority The syslog priority. Set to DEBUG as these are just the stdout of the
--max-files The number of logs that will exist at once

max_respawns=51
shift
daemon_name=51
shift
dmon \
--stderr-redir \
--max-respawns Smax_respawns \
--environ "LD_PRELOAD=libsetunbuf.so" \
$@ \
-- dslog \
--priority DEBUG \
--facility USER \
Sdaemon_name

}

Rt Setting register and insert wifil ko #tgst##u#is
insmod fsystem/driver/tx-isp-t31.ko isp_clk=220000000

insmod /system/driver/exfat.ko

insmod /system/driver/audio.ko spk_gpio=-1 alc_mode=0 mic_gain=0
#insmod [system/driver/favpu.ko

insmod /system/driver/sinfo.ko

insmod /system/driver/mmc_detect_test.ko

insmod /system/driver/sample_pwm_core.ko

insmod /system/driver/sample_pwm_hal.ko

insmod /system/driver/speaker_ctl.ko

insmod /system/driver/ch34x.ko

ubootddr="sed -n '3@p' [proc/jz/clock/clocks | cut -d ' ' -f 7°

if [["540.000MHz" == Subootddr]]; then
3 S

Figure D-3: Showing app_init.sh loads kernel modules

We know that iCamera is executed with root privileges because the app_init.sh script also loads
kernel modules. Because loading kernel modules requires root privileges we can assume that
app_init.sh is run with root privileges and therefore iCamera is run with root privileges.

56

S rabin2z -I ./bin/iCamera

mips
mips32r2
0x400000
1862356
elf
=
false
ELF32
GCC: (Ingenic r2.3.3 2016.12) 4.7.2 GCC: (Ingenic r3.3.0-gcc540 2018.84-11) 5.4.0
false
little
e true
flib/1ld-ucClibc.so0.0
oxe
c++
false
false
MIPS R3000
false
1inux
false
false
no
NONE
e false
false
true
1inux
true
3 $ file ./bin/iCamera
./bin/iCamera: ELF 32-bit LSB executable, MIPS, MIPS32 rel2 version 1 (SYSV), dynamically linked, interpreter /lib/ld-uClibc.so0.@, stripped

Figure D-4: Rabin2 output

Based on the file command and rabin2 we can see that iCamera is a 32-bit little endian mips
ELF binary that is dynamically linked and stripped of symbols. Rabin2 also indicates that
iCamera was written in C++.

Network Function Calls

References to bind - 1 locations [CodeBrowser: WyzeFirmware:/iCamera] — O X
Edit Help

References to bind - 1 locations |_ £ _.;',E x |

Code Unit Context
jal <EXTERMNAL=::bind UMCOMDITIONAL CALL

Location
00480380

Filter:

Figure D-5: There is 1 reference found to the bind() libc function

57

_ fd = socket(l.1.0);
if (fd < 0) {
perror("[av_recv] Error: failed to create sudic receiver unix domain socket");

I

else {

memset(auStackl76, 0, 0xGe);

austackl?7s,
auStackl7a.

uStacklsg
uStacklss
ustacklsl
ustackls?

uStackls3 =
uStackl4ds =
cStacklds =

cStackla4q

B2 =1;
"3 4 = Ox657a7977;

OxB475612d;
Ox622d6TE9;
Ox74737469;
Ox6d616572;
Ox6365722d;
OxGS7EE965;

r
D

iVar3 = bind{ fd, (sockaddr *)auStackl7s, Ox6e);
if (ivar3 < @) {
_ = = "lav_recv] Error: falled to bind audioc receiver unix domain socket":

}
else {

Figure D-6: Ghidra decompilation of reference to bind()

After some basic reverse-engineering we can assume that a pseudocode version of the bind

statement looks something like the following:

fd = socket(AF_UNIX, SOCK_STREAM, 0);
bind(fd, “wyze-audio-bitstream-receiver”, 0x6e);

This tells us that iCamera is binding a unix domain socket and not a network socket. Unix

domain sockets are used for interprocess communication so this would not be a good attack

vector since we can’t access this socket remotely.

x

References to connect - 1 locations [CodeBrowser: WyzeFirmware:/iCamera] — O
Edit Help
References to connect - 1 locations I_@ 4 = @E X
Location E;|Labe| Code Unit |C0ntem
004134f4 jal <EXTERNAL=::connect UNCOMNDITIOMNAL CALL
Filter:) = -

Figure D-7: There is 1 reference found to the connect() libc function

58

~ fd = socket(1,2,0);
if (fd =0) {

pivar2 = _errno_location();
strerror(*piVarz);
uvard = Oxcz;
pcVars = "iot creat socket error: %d,%sn";
b
else {
memset (local 50,0,0x8e);
local S0[0].sa_family = 1;
strocpy(local B0[0] . sa_data,"/tmp/hualaiclient.domain”, Oxeh);
iVarl = connect(fd,local B50,0x6e);
if (-1 = 1varl) {
return fd;
¥
close(fd);
pivar2 = _errno_location();
strerror(*piVarz);
uVard = Oxcf;
pcVar3 = "lot socket connect: %d,%shwn";
b

Figure D-8: Ghidra decompilation of reference to connect()

After some basic reverse-engineering we can assume that a pseudocode version of the connect
statement looks something like this:

fd = socket(AF_UNIX, SOCK_DGRAM, 0);
connect(fd, “/tmp/hualaiclient.domain”, 0x6b);

The iCamera binary is connecting to a local unix domain socket. This isn’t a good attack vector
because the connection isn’t over a network socket so we can’t access it remotely.

References to send - 1 locations [CodeBrowser: WyzeFirmware:/iCamera] - O X

Edit Help

References to send - 1 locations |_|fﬁr @

i
il

|
x

Location B | Label Code Unit Context

00413274 jal <EXTERMAL=::send UNCONDITIONAL_CALL

Filter, || &2 =-

Figure D-9: There is 1 reference found to the send() libc function

59

__fd = stored_unix_fd:

memset (&local 2020,0,0x2000) ;

local 2020 = param_1;

local_201lc = param_3;

memcpy (auStacks216, param_2, param_3);

FUN_0044882c ("connectivity/mgtt", "{\"sendCmd " :%d}", param_1,param_4);

if (fd =0 {
print_debug("[iCamera]l", &, "1ot.c", "lot_send",0x86, " (%5): SocketFd invalidin"):
sVarl = -1

¥

else {
sVarl = send(_ fd,&local_2020,local_201c + 8,0);
print_debug("[iCamera]", 8, "iot.c", "1ot_send",0x82," (%5):%s (ret%d, len:%d)wn");

¥

Figure D-10: Ghidra decompilation of reference to send()

After some more reverse engineering we found that the value of stored_unix_fd (which | have
renamed for clarity) is the unix domain socket returned from the connect() function call to
“tmp/hualaiclient.domain”. Therefore since this send() doesn’t involve the network we don’t
consider it for our attack surface.

]

References to sendto - 3 locations [CodeBrowser: WyzeFirmware:fiCamera] — O X
Edit Help
References to sendto - 3 locations I_ﬁr 9 = L[;IE X
Location B | Label Code Unit Context
0047ceSs jal <EXTERNAL=::sendto UNCOMDITIOMAL CALL
004819e0 jal <EXTERNAL=::sendto UNCOMDITIOMAL _CALL
00481b78 jal <EXTERNAL=::sendto UNCOMDITIOMAL CALL
Filter:) = -

Figure D-11: There are 3 references found to the sendto() libc function

60

DAT 0080d0SE = socket (2,3, ppVvar3-=p_proto);
if ((int)DAT oos0dose < o) {
perror("socket error");
uvars = gxffffffff;
}
else {
_uid = getuid();
seturd(wid);
setsockopt (DAT ooeodoso, Gxeffff, 0x1002,&local 2c,4);
DAT_0O80dass = 0;
DAT _0OB0dOSc = 0;
DAT_00B0dOS0 = 0;
DAT_GO80dasd = 2;
iVvard = inet_addr(param_1);
if (1vard == Oxffffffff) {
printf (" [ping:%dlerr: %s only support ip addr, (ex:192.xx.xx.x)%n",0xlle, "ping process");
uvars = gxffffffff;
'
else {
DAT_0060d058 = inet_addr{param_1);
DAT 0060d064 = getpid();
while (DAT 0060d048 < DAT @0Sdsofg) {
while(true) {
DAT _0060d048 = DAT 00604048 + 1;
DAT_0ORE0e0B6 (undefined2)DAT _00S0d048;
DAT_0DDE0e08l = O;
DAT_00EQe0B82 = 0;
DAT_0060e084 = (undefined2)DAT 0060d0E4;
DAT 00OB0e080 = 8;
gettimeofday ((timeval *)E&DAT 00802082, (_ timezone_ptr_t)0x0);

uvarll = ©;
puvars = (ushort *)&DAT 00G0e080;
do {

uvarl = *puVars;
puVars = puVars + 1;
uvarll = uVarll + uVarl;
} while (puvarS !'= (ushort *)0xE0e0cO);
arz = ({intluVarll == Gx10) + (uVarll & Oxffff);
DAT 0060e082 = ~((short)ivar2 + (short) ({uint)ivarz == 0x10});
sVarg = sendto (DAT_00S0d0S0, &DAT 00602080, 0x40, 0, (sockaddr *)&DAT_0060d054, 0x10);
1f (sVardS = 0) break;
usleep (30000) ;

Figure D-12: Ghidra decompilation of reference to sendto()

61

After doing some reverse engineering it looks like iCamera is sending a ICMP packet in the
pseudocode form of:

fd = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP);
sendto(fd, ?, 0x40, 0, ?, 0x10);

From static analysis alone it is hard to tell what the exact data is in the ICMP packet and to
where the ICMP packet is being sent. Luckily we were able to spin up a hotspot and view the
traffic from the Wyze Cam V3 in wireshark.

No. Time Source Destination Protocol Length Info
7009 94.366421774 192.168.12.195 192.168.12.1 TCHMP 38 Echo (ping] request U0, =seq=256/1, tel=64 (reply in 7010}
7010 94.366488668 192.168.12.1 192,168.12.195 ICME %8 Echo (ping) reply , seg=256/1, ttl=64 (request in T009)
7011 94.399275571 192.168.12.195 192.168.12.1 MR 98 Echo (ping) request , seq=512/2, ttl=64 (reply in 7012
7012 94.399335304 192.168.12.1 192.168.12.195 ICMP %8 Echo (ping) reply iy 0, =seg=512/2, ttl=64 (request in T011)
7013 94.446828160 192.168.12.195 192.168.12.1 1CMP 98 Echo (ping) request i 0, seq=768/3, ttl=64 (reply in 7014
7014 94.446902413 192.168.12.1 102.168.12.185 ICMP 98 Echo (ping) reply id=0xc800, seq=768/3, ttl=64 (request in T013)

Figure D-13: ICMP packet being sent to/from Wyze Cam V3

y Frame T009: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface apl, id 0

y Ethernet II, Src: Wyzelabs 14:c3:87 (d0:3£:27:14:23:87), Dst: IntelCor_89:4b:c2 (88:bl:11:89:4b:c2)

} Internet Protocol Version 4, Src: 192.168.12.1%5, Dst: 19%2.168.12.1

» Internet Control Message Protocol

Type: 8§ (Eche (p
Code: 0

Checksum:
[Checksum
Identifier (BE) :
Identifier (LE):
Seguence Number
Sequence Number
[Response frame:

Ox%e53

o

Status:

ing) reguest)

[correct]
Goad]

51200 (0xcB00)
200 (0x00c8)

(BE): 256 (0x0100)
(LE}: 1 (0x0001)
7010]

Timestamp from 1

[Timestamp from

Data (48 bytes)
Data:

[Length: 48]

16:11:50.924040000 EDT
0.433465071 seconds]

cmp data: May 5, 2022
icemp data (relatiwe):

00...

Figure D-14: Payload of sniffed ICMP packet

The Wyze Cam V3 has the ip address 192.168.12.195 and the hotspot access point (my laptop)
has the ip address 192.168.12.1. This means that the Wyze Cam V3 is sending an ICMP packet

to an access point with a data field of all zeros. It looks like it may be a form of a keep-alive
message. This is interesting but probably doesn’t lead to a vulnerability.

62

if (DAT 005d6794 < 0) {
perror(“video uds fd is not wvalidwn");
uvarl = Oxffffffff;

1

else {
memset (auStackls52, 0, 0xGe);
auStackl52. 02 =1;
auStackl52, 3 4 = Ox657a7977;
uStacklds = Ox3632682d;

uStackldl = Ox68622d78;

ustackl37 = Ox72747374;

uStackl33 = Ox6dE165;

_DAT_00E7A7TE = FUN_ 00525528 (param_1[7].param_1[8],1000,0);

DAT_QO&747f4 = 0;
uvarl = param_1[1];
if (uvarl !'=0) {

uVar2 = O;
do {
_n =uVarl - uVarz;
if (ox3ffo < n) {
_n = 0x3ffo;
+
uvars = _ n + uVarz;

DAT_BO6747f2 = uVar3 < uVarl = 1;
DAT_GE&747f0 = (ushort)(uVar2 == 03;
memcpy (&DAT 00574800, (void *) (*param_1 + uVarz2), n);
sendto (DAT 005d6794, EDAT 00674710, n + 0x10,0x40, (sockaddr *)auStackl52, OxGe);
DAT 0067474 = DAT 0QOB747f4 + 1;
uVarl = param_1[1];
uvar2 = uVars;
} while {uvar3 < uvVarl);

Figure D-15: Ghidra decompilation of second reference to sendto()

Some basic reverse engineering results in the simplified pseudocode:

fd = socket(AF_UNIX, SOCK_STREAM, 0);

sendto(fd, ?, ?, 0x40, “wyze _h2bx_bitstream”, 0x6e);

Although we don’t know what it is sending (or the length), we know iCamera is sending data to a
unix domain socket. It looks like this specific unix domain socket is responsible for video. This is
mildly interesting but likely won’t lead to a vulnerability.

The last reference to the sendto() function call was very similar to the previous one except it
communicated over a unix domain socket to the address “wyze-g711-bitstream”. Once again it
probably won’t lead to a vulnerability.

63

Location References Provider [References to recv - 3 locations, References toiot... — O X
Edit Help

References to recv - 3 locations I_'[fﬁr N I_AIE X |
Location B | Label Code Unit Context

004133b0 jal <EXTERNAL=> UNCOMNDITIONAL CALL
00480404 jal <EXTERNAL=>::recv UNCOMNDITIONAL CALL

00480458 jal <EXTERNAL=>::recv UNCOMNDITIONAL CALL

Filter:] = -

Figure D-16: There are 3 references found to the recv() libc function

The first reference communicates over a unix domain socket that we discussed earlier so it isn’t
of real interest to us.

The second and third reference receive over the unix domain socket that bind was called on
earlier (“wyze-audio-bitstream-receiver”). This isn’t of any interest to us from a vulnerability
research perspective.

64

Mmhm-im:mmmﬂ. . .

References to recvfrom - 1 locations

0047d0OBB jal <EXTERMAL=::recvfrom UNCOMNDITIONAL CALL

Figure D-17: There is 1 reference found to the recvfrom() libc function

65

sVarg = sendto (DAT_0060dES0, &DAT_0060e080, 0x40, 0, (sockaddr #)&DAT 00604054, Gx10);
if (svars < 0) break;

usleep (30000) ;
if (DAT oo0Sdsofs <= DAT 0060d048) goto LAB 0047ce8S;
i
perror("sendto error")
I
LABE_0047ce88:
local 30 = Ox10;
pfvar? = &local_bs;
do {
pfyar7-=fds_bits[0] = 0;
ptvar? = (fd_set *)pfVar7->fds_bits;
T while (&local 38 != (timeval *)pfuvar?);
ivarz = 0;

while ((DAT 0060d04c < DAT_0060d048 && (iVarZ <= DAT_005d5014))) {
local bs.fds_bits[DAT 0060050 == 5] =
ocal_bE.fds_bits[DAT _0060dESE == 5] | 1 << (DAT_0050d0S0 & Ox11);
LIv_sec = 1;
Z2.tv_usec = 0
5 = select(DAT 00604050 + 1, &Local he, (fd _set *)0x0, (fd_set *)0x0,&local 38);

if (ivarg == -1) break;
if (1iv
iVar2 = ivarz + 1;
}
else if ((local bE.fds _bits[DAT 0060d0SC == 5] == (DAT 0050d0SC & Ox1f) & 1U) != @) {
sVarg = recvfrom (DAT_0060dOS0, &DAT _0060d068, 0x1000, 0, (sockaddr *)&DAT 0080068, &local 30
¥

Figure D-18: Ghidra decompilation of reference to recvfrom()

Based on the recvfrom() function call’s proximity to the sendto() function call that sent out the
ICMP packets, and the fact that this recvfrom() uses the same socket as the sendto() call, we
reasonably conclude that this recvfrom is receiving the ICMP response packets. This is a
possible attack vector depending on how iCamera handles the buffer that the ICMP packet is
loaded into, and if it performs any checks validating the ICMP packet.

66

Buffer Overflow

There are no references to gets() in iCamera.

Figure D-19: There are 9 references found to the fgets() libc function

References to Fgets - 9 locations [CodeBrowser: WyzeFirmware:fiCamera] - O X
Edit Help
References to fgets - 9 locations I_@ 4 = @IE X
Location E;|Labe| Code Unit |Contem
0040a758 jal <EXTERMAL=::fgets LNCONDITIONAL CALL
00402844 jal <EXTERMAL=::fgets UNCONDITIONAL CALL
004125dc jal <EXTERMAL=::fgets UNCONDITIOMNAL_CALL
00412644 jal <EXTERMAL=::fgets LNCONDITIONAL CALL
00412754 jal <EXTERNAL=::fgets UNCONDITIONAL CALL
00412840 jal <EXTERNAL=::fgets LNCONDITIONAL_CALL
004453240 jal <EXTERMAL=::fgets LNCONDITIONAL CALL
0047ac30 jal <EXTERMAL=::fgets UNCONDITIONAL CALL
0047bc50 LAB 0047he50 jal <EXTERMAL=::fgets LNCONDITIONAL_CALL

All 9 references to fgets() are used safely. All calls to fgets use a size “n” that is less than or

equal to the size of the buffer that fgets is reading into.

Ex: buffer is size 108 and n is 100 so there is no risk of a buffer overflow.

FILE * str
char *pcvar
size_t svar
int ivarz;

char acStac
__stream =
iVar3 = @;

2am;

1;

2.

k136 [108];

fopen("/proc/net/wireless","r");

if [stream == (FILE *)0ox0) {
print_debug("[iCameral",S, "lot_msg_process.c","get_wifi_level",0x183, "Error opening filewn");

}

else {
LAB_004125d8:

acVarl =

fgets(acStackl36,100, stream);

Figure D-20: Ghidra decompilation of reference to fgets()

67

References to strcpy - 41 locations [CodeBrowser: WyzeFirmware:fiCamera] - O X
Edit Help
eferences to strepy - 41 locations I_1ﬁr * = '—’;‘IE s

Location
00407d4dc

Code Unit

<E}I{TEF¥NAL> -

UNCONDITIOMNAL CALL

0040c30¢ UNCONDITIONAL CALL

0040dgfg jal <EXTERNAL>::strcpy UNCONDITIONAL_CALL

0040dc38 jal <EXTERNAL=::strcpy UNCONDITIONAL_CALL

0040e5de jal <EXTERNAL=::strcpy UNCONDITIONAL CALL

0040e62¢c jal <EXTERNAL=::strcpy UNCONDITIONAL CALL

0040e67¢c jal <EXTERNAL>::strcpy UNCONDITIONAL_CALL V.

0040e7ec jal <EXTERNAL>::strcpy UNCONDITIONAL_CALL

004100ec jal <EXTERNAL=::strcpy UNCONDITIONAL CALL

004104fc jal <EXTERNAL>::strcpy UNCONDITIONAL CALL

00415898 jal <EXTERNAL>::strcpy UNCONDITIONAL_CALL

0041lbaas jal <EXTERNAL>::strcpy UNCONDITIONAL_CALL

004261dc jal <EXTERNAL=::strcpy UNCONDITIONAL CALL

0042acd0 jal <EXTERNAL>::strcpy UNCONDITIONAL CALL

0043a2cc jal <EXTERNAL>::strcpy UNCONDITIONAL_CALL

0043b598 jal <EXTERNAL>::strcpy UNCONDITIONAL_CALL .

0043bSfc jal <EXTERNAL=::strcpy UNCONDITIONAL CALL v

Filter:) = -
Figure D-21: There are 41 references found to the strcpy() libc function

int ivarl;

undefinedd uvarz;

DAT_005dc054 = 3;

ivarl =

if (ivarl = 0) {
DAT 005dc@Sc =
DAT 005dcO&0 =
DAT 005dcCad =
DAT 005dc0Es =
DAT 005dcCdc =
DAT 005dcC7o =
DAT 005dcC74 =
DAT 005dcCS8 =
DAT 005dcCSd =

uvarz = Oxfiffffff;

b

else {

[Apn——

s

e me .

GGGGPGGG

s

E| '

FUN_0040da8c [(char *)EDAT_00SdcOSE, 3);

stropy (param_1, (char *)&DAT 005dc0S8);

uvarz = 0;

b

Figure D-22: Ghidra decompilation of reference to strcpy()

68

This reference to strcpy() could be vulnerable depending if the src pointer &DAT_005dc058 can

be manipulated by an attacker. It is difficult to determine its vulnerability based on static analysis

alone and would probably need a closer look with dynamic analysis.

Most of the strcpy() calls seemed safe as the src parameter appears bounded, and unable to be

influenced by an attacker. There were a few strcpy() calls (like the one above) that copied from

a memory address, or parameter, whose contents are difficult to determine using static analysis.

Dynamic analysis would be useful in determining if these strcpy() calls are vulnerable to a buffer

overflow.

References to strncpy - 60 locations [CodeBrowser: WyzeFirmware:/iCamera] - O X
Edit Help
References to strncpy - 80 locations I_@ = _AIE X

Location B | Label Code Unit Context

0040cce0 <EXTERMAL=: :strncpy UNCONDITIOMNAL CALL

00410b00o jal <EXTERMNAL=::strncpy UNCONDITIOMNAL _CALL

00411074 jal <EXTERMAL=::strncpy LUNCOMDITIOMNAL CALL

004134e4 jal <EXTERMAL=::strncpy LUNCOMDITIOMNAL CALL

00414dog jal <EXTERMAL=::strncpy LUNCOMDITIONAL CALL i/
00414ffa jal <EXTERNAL=::strncpy UNCONDITIOMAL_CALL

004152do jal <EXTERMNAL=::strncpy UNCONDITIONAL CALL

004166da jal <EXTERMAL=::strncpy UNCOMDITIONAL CALL

Q0D4l1e748 jal <EXTERMAL=::strncpy LUNCOMDITIOMNAL CALL

004167b8 jal <EXTERMAL=::strncpy UNCOMDITIONAL CALL

0041 6f5¢ jal <EXTERNAL=::strncpy UNCONDITIOMNAL CALL

00dlaa3d jal <EXTERMAL=::strncpy UNCONDITIOMNAL CALL

0D4laavc jal <EXTERMAL=::strncpy LUNCOMDITIOMNAL CALL

0041fds0 jal <EXTERMAL=::strncpy LUNCOMDITIONAL CALL

0041fdosg jal <EXTERMAL=::strncpy UNCOMDITIOMNAL CALL

00439654 jal <EXTERNAL=::strncpy UNCONDITIOMNAL_CALL b
0043920 jal <EXTERMAL=::strncpy UNCONDITIONAL CALL v
Filter: 2 = -

Figure D-23: There are 60 references found to the strncpy() libc function

69

char acStackz7z [64]1;
char acStackzo2 [84];
char acStackl4a [54];
undefined austackso [54];
undefined4 local 10;

memset (acStack2T2, 0, 0x104)
FUN_0047a824 (acStack272);

strncpy (acStackzos, ", Ox40);
strncpy (acStacklad,” ", Oxd0);
FUN_0047a92¢ (ausStacksn);

local 10 = 2;

FUN_G048b8ec (acStack272);

return;

Figure D-24: Ghidra decompilation of reference to strncpy()

Most of the calls to strncpy() were clearly bound correctly (like the example above). It was easy
to tell that these strncpy() calls weren'’t vulnerable to a buffer overflow.

local b0 = param_1[0x2b];
if (local _bo !=0) {
strncpy ({char *)auStack208, (char #*) ((int)param_1 + 0x8e),local_bo);
FUN_0047164c (auStack208);
return;
}
uvarlo
pcvard

Oxed;
"NOT HAVE rtmp user name id !%n";

Figure D-25: Ghidra decompilation of second reference to strncpy()

Other strncpy() calls made it hard to tell if they were bound correctly (like the example above)
because the value for “n” was a memory address whose contents are hard to determine only
using static analysis. This is another example of when dynamic analysis would likely provide a

more concrete answer.

70

References to printf - 477 locations [CodeBrowser: WyzeFirmware:/iCamera] - O X

Edit Help

to printf - 477 locations |_|Er @ = @IE X
Location [EN | Label Code Unit | Context
00408184 jal <EXTERNAL=::printf UNCONDITIOMNAL CALL L
00405388 jal =EXTERNAL=::printf UNCONDITIOMNAL CALL)
004093cE jal <EXTERNAL=::printf LUNCOMDITIOMNAL CALL
0040b85c jal <EXTERNAL=::printf UNCOMDITIONAL CALL
0040facc jal <EXTERNAL=::printf UNCONDITIOMNAL CALL
00411lcece jal <EXTERNAL=::printf UNCONDITIOMNAL _CALL
00411cf0 jal <EXTERNAL=::printf LUNCOMDITIOMNAL CALL
00411dz28 jal =EXTERNAL=::printf LUNCOMDITIOMNAL CALL
00418e24 jal <EXTERNAL=::printf UNCOMDITIOMNAL CALL
0041lazaac jal <EXTERNAL=::printf UNCONDITIOMNAL _CALL
0041b23c jal <EXTERNAL=::printf UNCOMDITIONAL_CALL
0041b33c jal <=EXTERNAL=::printf UNCOMDITIOMNAL CALL
0041b9bs jal <EXTERNAL=::printf LUNCOMDITIONAL CALL
0041clb0 jal <EXTERNAL=::printf UNCONDITIOMAL_CALL
0041c270 jal =EXTERNAL=::printf UNCONDITIONAL CALL
D04lcaZc jal =EXTERNAL=::printf UNCOMDITIOMNAL CALL A
D041cas4 jal <EXTERNAL=::printf LUNCOMDITIOMNAL CALL A
Filter: L] = -

Figure D-26: There are 477 references found to the printf() libc function

int iVarl;

ivarl = IMP_IVS DestroyGroup(Q);

if {ivarl == 0) {
printf (" [%s]dbg: IMP_IVS DestroyGroup (Sd) ok, ret:%d!wn","IVS-MOTION",O,0);
return O;

b
printf (" [%slerr: IMP_IVS DestroyGroup (%d) fail, ret:Sd!wn","IVS-MOTION",O,1Varl);
return iVarl;

Figure D-27: Ghidra decompilation of reference to printf()

All references to printf() include a format string as the first parameter (like example above), so it
appears that there are no printf format string vulnerabilities.

71

References to sprintf - 99 locations [CodeBrowser: WyzeFirmware:/iCamera] — g X
Edit Help
References to sprintf - 99 locations I_@ @ = @E X
Location ElLabeI Code Unit Context
0040B5ed jal <EXTERNAL=::sprintf UNCONDITIOMAL_CALL i
00408080 jal <EXTERNAL=::sprintf UNCONDITIOMAL_CALL ™
004091c4 jal <EXTERNAL=::sprintf UMNCONDITIONAL CALL
00408ecc jal <EXTERNAL=::sprintf UNCONDITIONAL_CALL '
0040aédc jal <EXTERNAL=::sprintf UNCONDITIOMAL_CALL
00417098 jal <EXTERNAL=::sprintf UNCONDITIOMAL_CALL
0041727c jal <EXTERNAL=::sprintf UMNCONDITIONAL CALL
004204a8 jal <EXTERNAL=::sprintf UNCONDITIONAL_CALL
0042071c jal <EXTERNAL=::sprintf UNCONDITIOMAL_CALL
00420864 jal <EXTERNAL=::sprintf UNCOMNDITIOMNAL_CALL
00420a68 jal <EXTERNAL=::sprintf UMNCONDITIONAL CALL
00422988 jal <EXTERNAL=::sprintf UNCONDITIONAL_CALL
00422ebc jal <EXTERNAL=::sprintf UNCONDITIOMAL_CALL
00422fbc jal <EXTERNAL=::sprintf UNCOMNDITIOMNAL_CALL
00423e6c jal <EXTERNAL=::sprintf UNCONDITIONAL CALL
00423fb8 jal <EXTERNAL=::sprintf UNCONDITIONAL_CALL L
004241ac jal <EXTERNAL=::sprintf UNCONDITIOMAL_CALL v
Filter: 2 = -

Figure D-28: There are 99 references found to the sprintf() libc function

sprintf(acStack224, (char *)&FTR_DAT 00S3dasd, #*param_L1);
FUN_oEA7f468("setup”, "name", acStack224, acStackl24);
sprintf(acStack224, "Ssd", param_1[31);

FUN OG47f468("setup”, "TimeGap", acStack224, acStackl24);
sprintf(acStack224, (char *)&PTR_DAT_0053daed, param_1[2]);]
FUN OG47f468("setup”, "endTime", acStack224, acStackl24);
sprintf(acStack224, (char *)&FTR_DAT 00S3dasd, param_1[11);
FUN OG47f468("setup”, "beginTime", acStack224, acStackl24),;
sprintf(acStack224, "%d", param_1[4]);

FUN OG47f468("setup”, "Timezone", acStack224, acStackl24);

Figure D-29: Ghidra decompilation of reference to sprintf()

Some of the references to sprintf() above could be vulnerable depending if the second argument
can be manipulated by an attacker. It is difficult to determine if it's vulnerable based on static
analysis alone and would probably need a closer look with dynamic analysis.

72

References to FprinkF - 7 locations [CodeBrowser: WyzeFirmware:fiCamera] - o X
Edit Help
References to fprintf - 7 locations I_@ > E EE X
Location E.|Labe| Code Unit Context
0047acdc jal <EXTERNAL>::fprintf UNCONDITIONAL_CALL
0047ad38 jal <EXTERNAL=::fprintf UNCOMDITIOMAL _CALL
0047adbc jal <EXTERNAL>::fprintf UNCONDITIONAL_CALL
0047aelc jal <EXTERMAL>::fprintf UNCOMDITIONAL_CALL
0047ae48 jal <EXTERNAL=::fprintf UNCOMNDITIONAL_CALL
0047ae5c jal <EXTERNAL>::fprintf UNCOMNDITIONAL_CALL
0047afcd jal <EXTERNAL=::fprintf UNCOMDITIOMAL CALL
Figure D-30: There are 7 references found to the fprintf() libc function
else {

fwrite ("network={\n",1,10, stream);
fprintf(_ stream, "“\tssid=""%s%\"'n".param_1);

fwrite ("“they mgmt=WPA-PSK\n",1,0x12, stream);

fwrite ("“tpairwise=CCMP TKIP'n",1,0x14, stream);

fwrite ("“tgroup=CCMP TKIP WEPLO4 WEP40Wwn",1,0xle, stream);

fprintf(_ stream, "“tpsk=\"%s'"n",param_2);
pcVar2 = "“tscan_ssid=1%n";
sVar3 = Oxd;

Figure D-31: Ghidra decompilation of reference to fprintf()

All calls to fprintf() are used safely as they all include a hardcoded format string as the second

argument (like the example above).

73

File Access

References to fread - 21 locations [CodeBrowser: WyzeFirmware:fiCamera] - o X
Edit Help
References to fread - 21 locations I_‘@ = @IE x
Location E;|Labe| Code Unit Context
00406bd8 jal <EXTERNAL=>::fread UNCOMDITIONAL_CALL A
00406dcc jal <EXTERNAL=>::fread UNCOMDITIOMAL_CALL ™
00406740 jal <EXTERNAL=>::fread UNCOMDITIONAL_CALL
0040711c jal <EXTERNAL=>::fread UNCOMDITIOMAL_CALL
00407d30 jal <EXTERNAL=>::fread UNCOMDITIONAL_CALL
00417da0 jal <EXTERNAL=>::fread UNCOMDITIOMAL_CALL
0041770 jal <EXTERNAL=>::fread UNCOMDITIONAL_CALL
004180e4 jal <EXTERNAL=>::fread UNCOMDITIOMAL_CALL
004lacoe jal <EXTERNAL=>::fread UNCOMDITIONAL_CALL
0041ads4 jal <EXTERNAL=>::fread UNCOMDITIOMAL_CALL
004200d0 jal <EXTERNAL=>::fread UNCOMDITIONAL_CALL
0042022c jal <EXTERNAL=>::fread UNCOMDITIOMAL_CALL
00434d1c jal <EXTERNAL=>::fread UNCOMDITIONAL_CALL
0043f784 jal <EXTERNAL=>::fread UNCOMDITIOMAL_CALL
00440bE8 jal <EXTERNAL=>::fread UNCOMDITIONAL_CALL
00461350 jal <EXTERNAL=>::fread UNCOMDITIOMAL_CALL
00469a54 jal <EXTERNAL=>::fread UNCOMDITIONAL_CALL v
Filter: f2) = -

Figure D-32: There are 21 references found to the fread() libc function

Most of the calls to fread() were clearly bound correctly. It was easy to tell that these fread()
calls weren’t vulnerable to a buffer overflow.

1f (local_30 = Oxc8000) {
sVarS = (&DAT_00607b84) [(int)param_1 * Oxdb] - (&DAT_00807b80) [(int)param_1 * Ox4b];
if (Ox1000 < (int)sVars) {
sVarS = 0x1000:
b
sVars = fread(_ s + 5,1,sVarS, (FILE #) (&DAT_00807b74) [(int)param_1 * Ox4bl);

Figure D-33: Ghidra decompilation of reference to fread()

The fread() call above makes it hard to tell if it is bound correctly because the value for “n” and
the value for the buffer are memory addresses whose contents are hard to determine only using
static analysis. Dynamic analysis would likely provide a more concrete answer.

74

System

memset(acStack280,0,04100);
sprintf(acStack2s0,"ps | grep %s | grep -v grep = /tmp/process”,param_1);
print_debug("[iCameral",5, "binding.c","find if process rum",0x122,"find if process rum buf:%s “n")

system{acStack2s0);
memset (acStack230,0,0x100) ;

Figure D-34: Ghidra decompilation of reference to system()

There is a possibility for local privilege escalation if we had a shell on the Wyze Cam V3. The
full path isn’t specified for ps and grep when they are passed to the system() command. We
may be able to use a path trick to force the iCamera binary into using a malicious version of ps
or grep.

There are many other cases in iCamera where the full path of a program is not being specified
when calling system().

Notable Findings

e A call to recvfrom() is used to read in ICMP packets over a raw socket. Memory
corruption could occur if the processing of the packet isn’'t handled properly.

e Some strcpy() and strncpy() calls have arguments that may be unsafe, but their value is
difficult to determine through static analysis. Some of these function calls should be
further evaluated with dynamic analysis.

e |tis difficult to determine if a proper format string is used for some sprintf() calls, but it is
unlikely that these calls are vulnerable to a format string exploit.

e Some fread() calls have arguments that may be unsafe, but their value is difficult to
determine through static analysis. Some of these function calls should be further
evaluated with dynamic analysis.

e There are multiple calls to system() where the full path of a program isn’t specified. This
could lead to local privilege escalation if the PATH of iCamera was hijacked.

Firmware Visual Analysis

Generally, firmware updates are downloaded in compressed form to save space. To analyze the
firmware, we must first determine whether it is encrypted or compressed. The visual analysis of
the binary is one of the techniques that can be used to analyze unknown binary files. Based on
the generated pattern image we can determine the instruction set and architecture of the
embedded system, identify vulnerability, find the difference between two firmware, perform

75

security audits, and can be used to determine the security posture of the embedded system. We
used binwalk, binvis, pixd, bin2bm in this project to generate image patterns of the firmware[53].

Binwalk - Entropy

Entropy is a measure of the information density of the file and they are represented as a number
of bits per character[54]. If the entropy is very high meaning that there is a high chance that the
file is compressed or encrypted and cannot be used as it is for further analysis.

In binwalk, -E switch is used to find the entropy of the firmware[55].

) - [~/embedded
inwalk demo wcv3.bin

DECIMAL HEXADECIMAL DESCRIPTION

0 uImage header, header size header : Ox75A4CF47, created: 2022-02-17 02:13:24, image size: 9846784 bytes, Data Address: 0x@, Entry Point: 0x0, data
CRC: 0x1B15405A, 0S: Linux, CPU: MIPS, image type: Firmware Image, compression type: none, image name: "jz_fw"

64 0x40 uImage header, header size: 64 bytes, header CRC: 0xA3BC7407, created: 2021- 2 12: i i 897077 bytes, Data Address: 0x80010000, Entry Point: Ox
80416900, data CRC: 0xBOB2FE38, 0S: Linux, CPU: MIPS, image type: 0S Kernel Image, compression type: lzma, image nam x-3.10 isvp_swan 1.0__"

128 0x80 LZMA compressed data, properties: 0x5D, dictionary size: 67108864 bytes, uncompressed size

2031680 0x1FO040 Squashfs filesystem, little endian, version 4.0, compressio , size: 3853788 bytes, 384 inodes, blocksize: 131072 bytes, created: 2022-02-17 02:13:21

6029376 0x5C0040 Squashfs filesystem, little endian, version 4.0, compression:xz, size: 3815722 bytes, 194 inodes, blocksize: 131072 bytes, created: 2022-02-17 02:13:24

) - [~/embedded
inwalk ./latest\ version/demo wcv3.bin

DECIMAL HEXADECIMAL DESCRIPTION

0 0> ulmage header, header size: 64 bytes, header CRC: 0xD27C9C20, created: 2022-04-15 07:04:43, image size: 9912320 bytes, Data Address: 0x0, Entry Point: 0x@, data
CRC: 0x31B753A5, 0S: Linux, CPU: MIPS, image type: Firmware Image, compression type: none, image name
uImage header, header size: 64 bytes, header CRC: 0x3CEC2718, created 022-03-02 08:42:59, image si 897330 bytes, Data Address: 0x80010000, Entry Point: Ox
x-3.10 "

80416900, data CRC: 0x1589A43F, 0S: Linux, CPU: MIPS, image type: 0S Kernel Image, compression type: lzma, image nam X

128 0x80 LZMA compressed data, properties: O0x5D, dictionary size: 67108864 bytes, uncompressed size: -1 bytes
2031680 0x1FO040 Squashfs filesystem, little endian, ve n 4.0, compress , size: 3853780 bytes, 384 inodes, bloc 131072 bytes, created: 2022-04-15 07:04:43
6029376 0x5C0040 Squashfs filesystem, little endian, version 4.0, compression:xz, size: 3879414 bytes, 196 inodes, blocksize: 131072 bytes, created: 2022-04-15 07:04:43

Figure E-1: binwalk -B signature of demo_wcv3 4.36.8.32 and demo_wcv3 4.36.9.131

vp_swan 1.0

From the above E-1 image, we can see that the kernel version remains the same. Due to the
security fix, the size of the firmware is increased in the latest firmware.

Architecture: MIPS

Endianness: little

Kernel: Linux-3-10.14__isvp_swan_1.0
Compression type: LZMA

Image name: jz_fw

76

https://download.wyzecam.com/firmware/v3/demo_wcv3_4.36.9.131.zip

Entropy

Entropy

0.4 0.6 0.8 1.0
le7

0.0 0.2
Offset

Figure E-2: binwalk -E demo_wcv3_4.36.8.32

The image E-2 is generated on executing binwalk -E demo_wcv3_4.36.8.32 command and On
executing binwalk -E demo_wcv3 4.36.8.32 command image E-3 gets generated. Based on the
analysis, we could see that the entropy of the firmware image is near 1 which means that the
firmware is highly compressed. More numbers 0x00 were together in the firmware and it was
seen in the same firmware twice, due to this the firmware experienced a low entropy.

77

Entropy

0.0 0.2 0.4 0.6 0.8 1.0
Offset 1e7

Figure E-3: binwalk -E demo_wcv3_4.36.9.131

When both the firmware are compared, we could infer that the entropy of the latest firmware is

less than the previous version.

) - [~/embedded/latest version]
walk demo wcv3.bin

DECIMAL HEXADECIMAL ENTROPY

0x0 Rising entropy edge (©.993762)
Ox1CF800 Falling entropy edge (©.000000)
0x1FO000 Rising entropy edge (0.990478)
0x59C400 Falling entropy edge (©.609594)
0x5C0800 Rising entropy edge (©.995281)
0x973000 Falling entropy edge (0.198727)

) - [~/embedded/latest version]

demo_wcv3.bin

) - [~/embedded/latest version]

) - [~/embedded]
demo_wcv3.bin deps.sh

) - [~/embedded]
demo wcv3.bin

HEXADECIMAL ENTROPY

0x0 Rising entropy edge (0.993779)
0x1CE400 Falling entropy edge (0.841259)
0x1FOO00 Rising entropy edge (0.990511
0x59C400 Falling entropy edge (©.618717)
0x5C0800 Rising entropy edge (0.995281)
0x962C00 Falling entropy edge (0.763562)

Figure E-4: Entropy comparison

78

Pixd
Pixd is a tool based on hexdump and hexd, which uses a color palette to do the visualization of
the firmware data[56]. This tool can only be used to find the type of the architecture, address,

and its color code, determine the region where it has 0x00 values (black region), and can also
be used for comparing two firmware.

File Actions Edit View Help

Figure E-5a: pixd for demo_wcv3_4.36.8.32 firmware

79

File Actions Edit View Help
sy

Figure E-5b: pixd for demo_wcv3_4.36.8.32 firmware

Figure E-5a,5b shows the output from executing the pixd command on firmware. There are 3
black regions on the generated output image.

File Actions Edit View Help

t firmware File Actions Edit View Help

; 'j:!'l neok

)
Fh

o

1fe000 B

1reoge S,
o

Figure E-6a: pixd for demo_wcv3_4.36.9.131 firmware

80

ions Edit View Help

.r . _.nl.:'.l.u|;_"r.1 o -1

S0 g o
scocon I B o Bt S Sl R e o

Figure E-6b: pixd for demo_wcv3_4.36.9.131 firmware

Figure E-6a,6b shows the output from executing the pixd command on firmware. There are 3
black regions on the generated output image.

Analyzing the image visually, we can conclude that both are compressed and have different
values in their file.

Binvis

Binvis, is a tool used to visualize the files. This tool uses space-filling curves to generate the
image [57]. The Pink region on the generated image represents high entropy and the black
region represents low entropy. Since they generate unique patterns, they can also be used to
find if the firmware is modified[58].

81

Figure E-7: binvis for demo_wcv3 4.36.8.32 and binvis demo_wcv3 4.36.9.131

82

- T
« C O @ binvisio/#/view/local e % & = O @ (vpee
[1 Top 10 WaystoBoo.. @ books @ Python for Penteste... computer @ Download Movies B Welcome to Securit.. " Read more.. [[] 20 Best Websites To.. @ View Program Web... & How to Customize... [20 Tools for Animat..

%4 binvis.io about changelog help demo_wev3.bin «

ol o> [dec
0lde6e0 00 00 00 00 00 00 00 00 ©0 00 00 09 00 00 60 00
0lde6f0 00 00 00 00 00 ©0 00 Q0 00 00 00 09 00 00 @0 90
01de700 ©0 00 00 00 00 @0 G0 00 00 0O 0O 0D 0O 0O 00 0
01de710 00 00 00 00 00 @0 G0 00 0O 0O 0O 0D 0O 0O 00 00
01de720 00 00 00 00 00 @0 G0 00 00 0O 0O 0D 0O 0O 00 0
01de730 00 00 00 00 00 @0 G0 00 00 0O 0O 0D 0O 0O 00 0

HH 01de740 00 00 00 00 0O @O 0 Q0 00 00 00 00 00 00 0O 00
=== 01de750 00 00 00 00 00 G0 00 0O 00 0O 00 00 00 00 00 00

V] 01de760 00 @O 00 G0 00 20 G0 02 00 03 00 0D 00 00 G0 00
* 01de770 00 @0 0@ G0 00 GO B0 0P 00 0O 00 0D 00 0O G0 00

01de780 00 00 00 00 00 00 00 00 ©0 00 00 09 00 00 60 00
01de790 00 00 00 00 00 @0 G0 00 00 0O 0O 0D 0O 0O 00 00
0lde7a0 ©0 00 00 00 00 @0 G0 00 00 00 0O 0D 0O 0O 00 00
0lde7bo 00 00 00 00 00 @0 G0 00 00 0O 0O 0D 0O 0O 00 00
0lde7co 00 00 00 00 00 @0 G0 00 00 0O 0O 0D 0O 0O 00 00
olde7do 00 00 00 00 00 @0 G0 00 00 0O 0O 0D 0O 0O 00 00
0lde7e0 00 00 00 00 00 @0 G0 0O 0O 0O 0O 0D 0O 0O 00 00
01de7f0 00 0O 0O 0O 0O @0 00 DO 0O 0O 0O 0V 0O 66 60 00
01cde300 0O 0O 00 00 00 @0 00 00 00 00 00 00 00 00 00 00
01de810 ©0 00 0O 00 00 PO 00 00 00 0O 00 0V 00 00 00 00

byteclass range

0x00 0 - 9846912 export
Lo 9.4mb / 9.4mb

ascii

high

oxff

Figure E-8: binvis for demo_wcv3 4.36.8.32

This tool also shows us the hex value, address, and entropy. As can be seen in the above
image the black region represents a 0x00 value and also this region has the lowest entropy.

Bin2bmp

Among the list of visualizing tools, bin2bmp is a tool that is developed in python[59]. This tool
also converts binary data into graphical form. The analysis of the binary can be difficult as it
requires scaling, and ther eis possibility that the image can get distorted.

83

Figure E-9: binvis for demo_wcv3 4.36.8.32 and binvis demo_wcv3 4.36.9.131
Port Scanning using nmap

Port scanning is a technique that is used to find the open ports of a particular device. One of the
most common free and open-source tools used for port scanning is nmap [60]. This tool helps
us determine the OS, service running on the open ports, version of the service, protocol type,
vulnerable ports, and many others.

We connected the camera to the network by performing an initial setup. We can determine the

IP address of the camera using a command like nmap, fping, ping. The IP address can also be
found using the Wyze 10S application.

84

< Device Info

Device Model Wyze Camv3
MAC DO3F2731C&65D
IP Address 172.20.10.4
Firmware Version 4363109 CED >

Signal Strength ol
Network ST
Activation Date 04/30/2022
Plugin Version 2.30.3

Figure E-10: Wyze cam application - device info

As can be seen from the figure E-10, we found that the camera has an IP address of
172.20.10.4 from the device info page and executed below command to find open tcp ports.

Anmap.exe -p--T4 -Pn -vv 172.20.10.4

Nmap 7.92 scan initiated Mon May 9 18:26:44 2022 as: C:\\Users\\suman\\Downloads\\nmap-7.92-win32\\nmap-7.92\\nmap.exe -p- -T4 -Pn -vv -oN wyze cam_3 on_device tcp 172.20.10.4
Nmap scan report for 172.20.10.4

Host is up, received arp-response (@.014s latency).

Scanned at 2022-05-89 18:26:55 Eastern Daylight Time for 82s
All 65535 scanned ports on 172.20.10.4 are in ignored states.
Not shown: 65535 closed tcp ports (reset)

MAC Address: D@:3F:27:31:C6:5D (Wyze Labs)

Read data files from: C:\Users\suman\Downloads\nmap-7.92-win32\nmap-7.92
Nmap done at Mon May 9 18:28:17 2@22 -- 1 IP address (1 host up) scanned in 93.45 seconds

Figure E-11: nmap - TCP - before update

From the above image, we can conclude that there are no open TCP ports on the device that
are used for communication

As we already know that most streaming services use UDP for their communication, we
executed the below command to find open UDP ports.

85

Anmap.exe -T4 -vv -sU 172.20.10.4

Nmap 7.92 scan initiated Mon May 9 18:40:37 2022 as: C:\\Users\\suman\\Downloads\\nmap-7.92-win32\\nmap-7.92\\nmap.exe -T4 -vv -sU -oN wyze_cam_3_on_device_udp 172.20.10.4
Warning: 172.20.10.4 giving up on port because retransmission cap hit (6).

Increasing send delay for 172.20.10.4 from 100 to 2@ due to 11 out of 12 dropped probes since last increase.

Increasing send delay for 172.20.10.4 from 200 to 460 due to 11 out of 11 dropped probes since last increase.

Increasing send delay for 172.20.10.4 from 40@ to 8e@ due to 11 out of 11 dropped probes since last increase.

Nmap scan report for 172.20.10.4

Host is up, received arp-response (©.0066s latency).

Scanned at 2022-05-09 18:40:48 Eastern Daylight Time for 1075s

Not shown: 979 closed udp ports (port-unreach)

PORT STATE SERVICE REASON

53/udp open|filtered domain no-response
68/udp open|filtered dhcpe no-response
120/udp open|filtered cfdptkt no-response
135/udp open|filtered msrpc no-response
3456/udp open|filtered IISrpc-or-vat no-response
4444/udp open|filtered krbs24 no-response
5555/udp open|filtered rplay no-response
16947/udp open|filtered unknown no-response
17207/udp open|filtered unknown no-response
21247/udp open|filtered unknown no-response
21261/udp open|filtered unknown no-response
21556/udp open |filtered unknown no-response
23608/udp open|filtered unknown no-response
24279/udp open|filtered unknown no-response
26720/udp open|filtered unknown no-response
41446/udp open|filtered unknown no-response
42056/udp open|filtered unknown no-response
49154/udp open|filtered unknown no-response
49178/udp open|filtered unknown no-response
49213/udp open|filtered unknown no-response
57172/udp open|filtered unknown no-response

MAC Address: D@:3F:27:31:C6:5D (Wyze Labs)

Read data files from: C:\Users\suman\Downloads\nmap-7.92-win32\nmap-7.92
Nmap done at Mon May 9 18:58:43 2022 -- 1 IP address (1 host up) scanned in 1086.11 seconds

Figure E-12: nmap - UDP - before update

We could notice that there are few ports in openlfiltered status. We cannot concretely conclude
that these ports are open for communication as we don’t have a mechanism to check UDP
connection is established or not.

Since the device is still running the demo_wcv3_4.36.8.32 version of firmware, there is a
chance that a new port might open during an update and if new services are added to the
device. We could not capture the firmware update packets in Wireshark [61] as it requires a
network adapter in monitor mode.

After updating the firmware to demo_wcv3_4.36.9.131, we executed nmap command to find if
there is any change in the open ports.

Nmap 7.92 scan initiated Tue May 10 ©6:50:11 2022 as: C:\\Users\\suman\\Downloads\\nmap-7.92-win32\\nmap-7.92\\nmap.exe -p- -T4 -Pn -vv -oN wyze cam_3_lLatest 172.20.10.4
Nmap scan report for 172.20.10.4

Host is up, received arp-response (0.0083s latency).

Scanned at 2022-85-1@ 06:50:24 Eastern Daylight Time for 64s

All 65535 scanned ports on 172.20.10.4 are in ignored states.

Not shown: 65535 closed tcp ports (reset)

MAC Address: D@:3F:27:31:C6:5D (Wyze Labs)

Read data files from: C:\Users\suman\Downloads\nmap-7.92-win32\nmap-7.92
Nmap done at Tue May 1@ @6:51:28 2022 -- 1 IP address (1 host up) scanned in 76.78 seconds

Figure E-13: nmap - TCP - After update

After a successful update, we could see that no new TCP ports were opened but, on the UDP
scan, we could see it has detected a few more ports. Also, a few ports were closed after the

86

update. The image below shows the additional ports that are in openl|filtered status after the
firmware update.

Nmap 7.92 scan initiated Tue May 10 07:16:02 2022 as: C:\\Users\\suman\\Downloads\\nmap-7.92-win32\\nmap-7.92\\nmap.exe -T4 -vv -sU -oN wyze cam_3_latest_udp_try 172.20.10.4
Increasing send delay for 172.20.10.4 from 50 to 100 due to 11 out of 12 dropped probes since last increase.

Increasing send delay for 172.20.10.4 from 100 to 20@ due to 11 out of 13 dropped probes since last increase.

Increasing send delay for 172.20.10.4 from 400 to 80e due to 11 out of 11 dropped probes since last increase.

Warning: 172.20.10.4 giving up on port because retransmission cap hit (6).

Nmap scan report for 172.20.10.4

Host is up, received arp-response (0.0048s latency).

Scanned at 2022-05-10 ©7:16:21 Eastern Daylight Time for 1038s

Not shown: 958 closed udp ports (port-unreach)

PORT STATE SERVICE REASON

67/udp open|filtered dhcps no-response
512/udp open|filtered biff no-response
10@87/udp open|filtered unknown no-response
1067/udp open|filtered instl boots no-response
1060/udp open|filtered cognex-insight no-response
1234/udp open|filtered search-agent no-response
3206/udp open|filtered rib-slm no-response
5353/udp open|filtered zeroconf no-response
5555/udp open|filtered rplay no-response
6001/udp open|filtered X11:1 no-response
8181/udp open|filtered unknown no-response
8900/udp open|filtered jmb-cds1 no-response
9199/udp open|filtered unknown no-response
16548/udp open|filtered unknown no-response
17331/udp open|filtered unknown no-response
17490/udp open|filtered unknown no-response
17573/udp open|filtered unknown no-response
18081/udp open|filtered unknown no-response
18228/udp open|filtered unknown no-response
19039/udp open|filtered unknown no-response
19504/udp open|filtered unknown no-response
19792/udp open|filtered unknown no-response
200819/udp open|filtered unknown no-response
21167/udp open|filtered unknown no-response
22055/udp open|filtered unknown no-response
22105/udp open|filtered unknown no-response
22109/udp open|filtered unknown no-response
23965/udp open|filtered unknown no-response
24511/udp open|filtered unknown no-response
24910/udp open|filtered unknown no-response
31365/udp open|filtered unknown no-response
34570/udp open|filtered unknown no-response
37144/udp open|filtered unknown no-response
38498/udp open|filtered unknown no-response
20724/udp open|filtered unknown no-response
40847 /udp open|filtered unknown no-response
45247 /udp open|filtered unknown no-response
49174/udp open|filtered unknown no-response
29209/udp open |filtered unknown no-response
61550/udp open|filtered unknown no-response
62154/udp open|filtered unknown no-response

MAC Address: D@:3F:27:31:C6:5D (Wyze Labs)

Read data files from: C:\Users\suman\Downloads\nmap-7.92-win32\nmap-7.92
Nmap done at Tue May 1@ ©7:33:39 2022 -- 1 IP address (1 host up) scanned in 1050.34 seconds

Figure E-14: nmap - UDP scan - After update

It was challenging to analyze the open ports with the limited timeline, so we left it for future
action.

Binary Analysis of jz_fw.bin

We removed the Linux filesystem from the binary, leaving only a binary firmware package called
jz_fw.bin’. This binary was examined using a graphical version of Radare2 called Cutter. Cutter
requires the binary, as well as other clues, to help it disassemble the code. The information
provided to Cutter is shown in Figure A-53.

87

@ Load Options X

@

Program: C:\Users\steep\OneDrive\Documents\UMD\ENPMG64_Hardware\project\jz_f.bin

@ Analysis: Enabled
Level: Auto-Analysis (aaa) {
None Auto Auto Exp Advanced |

([Load in write mode (-w)
() Do ot koad bin information (-n)
Use virtual addressing

@ import demangled symbols
+ Advanced options

CPU options |
Architecture: mips | oPU: auto ~
Bits: 32 ~ | Endianness: Little

Kemel: none ~ Format: Auto

Load bin offset (-8) 80

Map offset (-m) 0x83F90000

|

|

|

] Load PDB |
|
|

Concel [ok |

Figure A-53: Cutter setup

The ‘load bin offset’ was taken from the binwalk output, and the ‘map offset’ was retrieved from
the memory map of Figure A-15. A sample of the disassembled code is shown in Figure A-54.
Cutter did understand many of the instructions, identifying them as simply “invalid”. Additionally,
it was noted that some of the function addresses were well above the limit of 0x8400 0000 as
shown in the memory map in Figure A-15. Larger functions (~1000 instructions or longer) were
interpreted as nop sleds, or branches to empty functions.

& Cuttar—C: ts\LIMDLENPME64 | . Fobin - o x

2
1
1
1
1
1
1
1
1
1
1
2 (a3)
1
1
1
1
1
1
1
1
1

x

Dafbowd SETGs Impors SN\ Dmamenbly Gagh (fn000feeds) Hesmp Decsspler (fon.oocdeess)

Figure A-54: Example of Cutter disassembly of jz_fw.bin

88

Based on these issues, we provided different parameters to Cutter and re-ran the analysis.
Variations of parameters attempted include:

Architecture: mips, mips.gnu
Endianness: little, big
Kernel: Linux, none

Format: bootimg, Auto

Providing different parameters did result in different output. However, none of these input
changes resolved the issues.

Angr-Management is a similar tool used for binary analysis, and requires very similar parameter
inputs. The inputs were varied as;

Architecture: MIPS32, MIPS32/64
Endianness: little, big

Providing different parameters resulted in different output. However, none of these input
changes resolved the issues. See Figure A-55 for an example of the output.

[~
Fenctiom BUK] Dassersly Wm Provmiy Foeudoceds Sregy Paiches Symbokc farcution S Inémaction

Lot _0nB4155100:
84155100 pref Oulb, [$t2)
4155104 ldcl $f23, [sal]

BA1ESETD rop
BA1ESefd rop
BA1ESefS mop
BalEsefc mop
BAIESTO0 rop

BAIBSTRE e
BAIESTIO mop
BAIESTI4 rop
BA1E5118 mop
BAIESTIC mop
BAIESTI0 mep

BA16512:
BA16512: &
BAIEST2E e

Figure A-55: Example output from Angr-Management
We also tried Radare2 using the Command Line Interface (CLI). This provided the most

flexibility while improving the granularity of the inputs. ‘e’ Variables describing the architecture
can be defined from the command line. See Figure A-56 for an example.

89

anal.arch=mips
cfg.bigendian=false
asm.noisy=true
asm.fcnlines=true
asm.cpu=?

.cpu=mips32/64
.syntax=?

]> asm.syntax=jz

Figure A-56: Example showing command line instructions to define the CPU architecture

Help can be provided for a particular variable, as shown in Figure A-57 for asm.syntax
(assembly syntax).

- e asm.syntax=?

> asm.syntax=jz

e asm.syntax=jz
0]> e asm.strenc=?

- if string's 2nd & 4th bytes are @ then utfi6le else if 2nd - 4th & 6th bytes are © & no char >
if utf8 char detected then utfs else latini
83f9p000]> e asm.midflags=?
do not show flag
show without realign
realign at middle flag
ealign at middle flag if sym.*
f90000] asm.minvalsub=7
asm.minvalsub=?
asm.invhex=?
asm.features=?

asn.decoff
.decoff

Figure A-57: Getting help setting ‘e’ variables in radare2

Figure A-58 shows additional variable used to define the architecture prior to performing
analysis (aaa).

90

e asm.family=?
x83f > e asm.midflags=?
@ = do not show flag
1 = show without realign
2 = realign at middle flag
3 = realign at middle flag if sym.*
x83f9 e asm.cyclespace=?
e asm.i ex=true
e asm.syntax

e asm.syntax=?

J
regnum
X e anal.gp=?
> e anal.gp=0xB1f8ef64
x83f - & anal.cpp.abi
r_config_get: variable 'anal.cpp.abi' not found
X] e anal.cpp.abi=?
r_config_set: variable 'anal.cpp.abi’' not found
x83f - e anal.jmptbl=?
e anal.strings=true
e anal.to=0x84080000
> @ anal.from=0x81f6e664
Usage: [.][times][cmd][~grep][@[@iter]addr!size][|>pipe] ; ...
Append '?' to any char command to get detailed help
prefix with number to repeat command N times (f.ex: 3x)

* x]value
| (macro arg® argl)

Figure A-58: Additional examples of setting up ‘e’ variables in radare2

The MIPS architecture proved to be a challenge to analyze using these tools. Other tools are
available, like Ghidra or IDA, but weren’t attempted due to time constraints. Pulling the thread
on these binary analysis tools is left for future action.

Conclusions

During our analysis we uncovered several possible issues related to poor coding practice and
existing CVEs. Tools like binwalk, radare2, Cutter, and Ghidra were useful in performing this
analysis. The goal of this project was to uncover vulnerabilities in the device, and we feel we
have achieved this objective. Our stretch goal was to exploit these vulnerabilities, and
unfortunately we did not get that far. We leave that for further research.

The two possible vulnerabilities that stood out to us in the iCamera binary are the recvfrom() call
that reads ICMP packets over a raw socket, and the lack of full path specification for the
programs passed to the system() call. If the recvfrom() call is truly vulnerable then remote code
execution may be possible, and as a result a shell could be achieved on the Wyze Cam V3. If
the system() call was also truly vulnerable to PATH hijacking then we could theoretically
escalate our privileges to a root shell. Although it is possible that the other notable findings
(strcpy, strnepy, fread, sprintf) could lead to a vulnerability, we determined that it is unlikely
because even if they do use some of their parameters unsafely, they don’t appear to interact
with attacker controlled input.

Our firmware analysis showed that many of the vulnerable CVEs would either need direct
physical network access, access to the firmware within the supply chain, or inject utilities to take

91

advantage of one of the many unpatched CVEs. The risk of such an attack was assessed as
low-to-medium.

Additional analysis can be performed based on the work described in this paper. Several items
are missing from the memory map (GPIO, peripherals...) that should be added by a future effort.
The Ingenic T31 SoC and the XBurst1 deserve closer scrutiny, as well as the role of the RISC-V
processor in the boot process. The u-boot process occurs very quickly, and the provided time to
interrupt the process was minimal. Attempts to interrupt the process failed. There may be other
approaches that have a higher likelihood of success. Firmadyne successfully emulates the
hardware, so the binary can be executed and analyzed on a laptop. We showed that we can
change the root password but we could not flash the repacked firmware to the hardware. This
should be relatively easy to investigate given more time than we have for this paper. The
information we provided to setup the amdgpu drivers and hashcat should enable the ability to
crack the linux password, maybe with a more powerful gpu or cheap cloud service. Wyze’s
passwords have been 8-10 characters in the past, making this a doable effort. Various firmware
visual analysis tools were used and results were compared. It was also found that the visual
analysis can aid in the process of firmware analysis. We also investigated if any new ports are
opened after updating the firmware using nmap.

92

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

“Wyze cam v3,” Wyze. [Online]. Available: https://wyze.com/wyze-cam.html.
[Accessed: 11-Mar-2022].

“Security & trust,” Wyze. [Online]. Available:
https://wyze.com/wyze-security-and-trust. [Accessed: 11-Mar-2022].

“Disclosure,” Networkcamerabug.info. [Online]. Available:
https://networkcamerabug.info/. [Accessed: 11-Mar-2022].

FiveLeavesLeft, “WyzeCameralLiveStream: Hack to allow live streaming from wyze
cameras to vic or mpv on your desktop,” Github. [Online]. Available:
https://github.com/FiveLeavesLeft/\WWyzeCameraLiveStream. [Accessed:
11-Mar-2022].

mrlt8, “docker-wyze-bridge: RTMP/RTSP/HLS bridge for Wyze cams in a docker
container,” Github. [Online]. Available: https://github.com/mrlt8/docker-wyze-bridge.
[Accessed: 11-Mar-2022].

HclX, “WyzeHacks: Hacks | discovered allowing Wyze camera owners to do
customizations,” Github. [Online]. Available: https://github.com/HcIX/WyzeHacks.
[Accessed: 11-Mar-2022].

Gwendolyn, “Wyze Cam RTSP,” Wyze.com, 05-Apr-2022. [Online]. Available:
https://support.wyze.com/hc/en-us/articles/360026245231-Wyze-Cam-RTS.
[Accessed: 10-May-2022].

Mitre, “CVE-2019-9564,” Mitre.org. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9564. [Accessed:
06-Apr-2022].

Mitre, “CVE-2019-12266,” Mitre.org. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12266. [Accessed:
06-Apr-2022].

93

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. Davenport, “Wyze knew for years that hackers could remotely access its cameras,
but didn’t tell anyone,” XDA, 31-Mar-2022. [Online]. Available:
https://www.xda-developers.com/wyze-security-vulnerability-2022/. [Accessed:
05-Apr-2022].

Gwendolyn, “Release Notes & Firmware,” Wyze.com. [Online]. Available:
https://support.wyze.com/hc/en-us/articles/360024852172-Release-Notes-Firmware.
[Accessed: 07-Apr-2022].

Bitdefender, Vulnerabilities Identified in Wyze Cam loT Device. Bitdefender.
[Online]. Available:
https://www.bitdefender.com/files/News/CaseStudies/study/413/Bitdefender-PR-
Whitepaper-WCam-creat5991-en-EN.pdf?clickid=yiwUoVT27xyIRgqWdXzvzy4eU
kGQNnUhNTJdyg0&irgwc=1&MPid=10078. [Accessed: 07-Apr-2022].

B. Toulas, “Wyze Cam flaw lets hackers remotely access your saved videos,”
BleepingComputer, 29-Mar-2022. [Online]. Available:
https://www.bleepingcomputer.com/news/security/wyze-cam-flaw-lets-hackers-remote
ly-access-your-saved-videos/. [Accessed: 08-Apr-2022].

Certcc, “Trommel: TROMMEL.: Sift Through Embedded Device Files to Identify
Potential Vulnerable Indicators,” Github. [Online]. Available:
https://github.com/CERTCC/trommel. [Accessed: 06-Apr-2022].

C. Smith, “Firmwalker,” Github. [Online]. Available:
https://github.com/craigz28/firmwalker. [Accessed: 06-Apr-2022].

“rlwyzecam - Wyze still vulnerable to krack?,” reddit. [Online]. Available:
https://www.reddit.com/r/'wyzecam/comments/aaao44/wyze_still_vulnerable_to_krack/.
[Accessed: 10-May-2022].

Gullo, K., Rodriguez, K., Romero, C., Reitman, Rainey, Tsukayama, H., Kelley, J., Mir,
R., Greenberg, W., Jue, A., & Rathi, M., “Coders’ rights project Reverse Engineering
FAQ,” Electronic Frontier Foundation. [Online]. Available:
https://www.eff.org/issues/coders/reverse-engineering-faq. [Accessed: 08-Apr-2022].

94

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

A. Robertson, “The US Copyright Office just struck a blow supporting the right to
repair,” The Verge, 27-Oct-2021. [Online]. Available:
https://www.theverge.com/2021/10/27/22747310/us-copyright-office-dmca-section-12
01-exemption-rulemaking-report. [Accessed: 08-Apr-2022].

Dongguan Dongdian Testing Service Co., Ltd, Report No.: DDT-R21050704-1E2.
[Online]. Available: https://fcc.report/FCC-ID/2AUIUWYZEC3B/5289930.pdf.
[Accessed: 08-May-2022].

“Ingenic Semiconductor_M200 M150 JZ4780 JZ4775 JZ4760B,” Ingenic. [Online].
Available: http://www.ingenic.com.cn/en/?product/id/20.html. [Accessed:
15-Apr-2022].

J.-L. A. (CNXSoft), “Ingenic T31 Al video processor combines MIPS & RISC-V
cores,” CNX Software - Embedded Systems News, 26-Apr-2020. [Online]. Available:
https://www.cnx-software.com/2020/04/26/ingenic-t31-ai-video-processor-combines-x
burst-1-mips-and-risc-v-lite-cores/. [Accessed: 08-May-2022].

XBurst1 CPU Core Programming Manual. Ingenic, 2014.

XBurst1 Instruction Set Architecture MIPS extension/enhanced Unit 2 Programming
Manual. Ingenic, 2017.

Firmadyne, “firmadyne: Platform for emulation and dynamic analysis of Linux-based
firmware,” Github. [Online]. Available: https://github.com/firmadyne/firmadyne.
[Accessed: 15-Apr-2022].

“CVE-2012-6638,” CVE Details, 15-Feb-2014. [Online]. Available:
https://www.cvedetails.com/cve/CVE-2012-6638/. [Accessed: 30-Apr-2022].

“CVE-2013-4563,” CVE Details, 20-Nov-2013. [Online]. Available:
http://www.cvedetails.com/cve/CVE-2013-4563. [Accessed: 30-Apr-2022].

“CVE-2013-4348,” CVE Details, 04-Nov-2013. [Online]. Available:
http://www.cvedetails.com/cve/CVE-2013-4348. [Accessed: 30-Apr-2022].

“CVE-2013-7263,” CVE Details, 06-Jan-2014. [Online]. Available:
http://www.cvedetails.com/cve/CVE-2013-7263. [Accessed: 30-Apr-2022].

95

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

“CVE-2013-7281,” CVE Details, 08-Jan-2014. [Online]. Available:

http://www.cvedetails.com/cve/CVE-2013-7281. [Accessed: 30-Apr-2022].

“CVE-2013-6378,” CVE Details, 27-Nov-2013. [Online]. Available:

http://www.cvedetails.com/cve/CVE-2013-6378. [Accessed: 30-Apr-2022].

“CVE-2013-4515,” CVE Details, 12-Nov-2013. [Online]. Available:

http://www.cvedetails.com/cve/CVE-2013-4515. [Accessed: 30-Apr-2022].

“CVE-2013-4516,” CVE Details, 12-Nov-2013. [Online]. Available:

http://www.cvedetails.com/cve/CVE-2013-4516. [Accessed: 30-Apr-2022].

“CVE-2013-4587,” CVE Details, 14-Dec-2013. [Online]. Available:

http://www.cvedetails.com/cve/CVE-2013-4587. [Accessed: 30-Apr-2022].

“CVE-2013-7264,” CVE Details, 06-Jan-2014. [Online]. Available:

http://www.cvedetails.com/cve/CVE-2013-7264. [Accessed: 30-Apr-2022].

“CVE-2013-7265,” CVE Details, 06-Jan-2014. [Online]. Available:

http://www.cvedetails.com/cve/CVE-2013-7265. [Accessed: 30-Apr-2022].

“CVE-2013-7266,” CVE Details, 06-Jan-2014. [Online]. Available:

http://www.cvedetails.com/cve/CVE-2013-7266. [Accessed: 30-Apr-2022].

“CVE-2013-7267,” CVE Details, 06-Jan-2014. [Online]. Available:

http://www.cvedetails.com/cve/CVE-2013-7267. [Accessed: 30-Apr-2022].

“CVE-2013-7268,” CVE Details, 06-Jan-2014. [Online]. Available:

http://www.cvedetails.com/cve/CVE-2013-7268. [Accessed: 30-Apr-2022].

“CVE-2013-7269,” CVE Details, 06-Jan-2014. [Online]. Available:

http://www.cvedetails.com/cve/CVE-2013-7269. [Accessed: 30-Apr-2022].

“CVE-2013-7271,” CVE Details, 06-Jan-2014. [Online]. Available:

http://www.cvedetails.com/cve/CVE-2013-7271. [Accessed: 30-Apr-2022].

“CVE-2013-7270,” CVE Details, 06-Jan-2014. [Online]. Available:

http://www.cvedetails.com/cve/CVE-2013-7270. [Accessed: 30-Apr-2022].

“‘Understanding /etc/shadow file format on Linux,” Cyberciti.biz. [Online].
Available: https://www.cyberciti.biz/fag/understanding-etcshadow-file/.
[Accessed: 10-May-2022].

96

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

SDIO Product Specification, IEEE 802.11 b/g/n 2.4 GHz 1T1R WiFi Module
BT58189-2 Single Module

Single Chip IEEE 802.11 b/g/n 1T1R WLAN With SDIO Interface Datasheet
Rev 0.6, Realtek

BCT8933 High Power Low THD+N Class T Audio Amplifier, data sheet,
Broadchip

A4003 3CH Power Management IC, data sheet, Aerosemi

EN25QH128A (2T) 128 Megabit 3V Serial Flash Memory with 4Kbyte Uniform
Sector, EON

T31_QFN_SC4335 38 Schematic Revision 1.0, Ingenic Semiconductor Co.,
LTD

XBurst Instruction Set Architecture MIPS eXternsion/enhanced Unit
Programming Manual, Release Date: June 2 2017, Ingenic Semiconductor
Co., LTD

XC6219/XC6211 Series 300mA High Speed LDO Regulators with ON/OFF
Switch, TOREX

SC4335 Product Flier CMOS Image Sensor, SmartPixel-2 Series, data sheet,
SMARTSENS

Mipsdis: MIPS disassembler in the browser, May 4 2017, [Online] Available:
https://blog.loadzero.com/blog/announcing-mipsdis, Jason McSweeney
[Accessed: May 3 2022]

Abhijith-Soman, “How to do firmware visual analysis,” Payatu. [Online].
Available: https://payatu.com/firmware-visual-analysis. [Accessed:

97

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

10-May-2022].

J. Walker, “Pseudorandom number sequence test program,” Fourmilab.ch.
[Online]. Available: https.//www.fourmilab.ch/random/. [Accessed:
10-May-2022].

Binwalk: Firmware analysis tool.
FireFly, pixd: Colourful visualization tool for binary files. .
“Corte.Si,” Corte.si. [Online]. Available: https://corte.si/. [Accessed:

10-May-2022].

“Binvis.lo,” Binvis.io. [Online]. Available: http://binvis.io/#/. [Accessed:
10-May-2022].

“Python-datavis,” SourceForge. [Online]. Available:
https://sourceforge.net/projects/bin2bmp/. [Accessed: 10-May-2022].

“‘Nmap: The network mapper - Free Security Scanner,” Nmap.org. [Online].
Available: https://nmap.org/. [Accessed: 10-May-2022].

“Wireshark - Go Deep,” Wireshark.org. [Online]. Available:
https.//www.wireshark.org/. [Accessed: 10-May-2022].

98

