
ENPM664 Final Report

Team Members:
Brandon Perkins
Steve Routh

Samridha Murali
Sumanth Thyagarajan

Michael Lindsey

05/10/2022



Table of Contents
Executive Summary 2

The Team 3

Related Works and Background 4

Project Description 5

Project Results 6
Hardware Analysis 6

Physical disassembly 6
Component Identification and Analysis 8

Primary Board Analysis 8
Ingenic T31 SoC 11

XBurst1 16
Secondary Board Analysis 18

UART Access 19
Analysis of the U-boot Output 25

Hardware Emulation 33
Linux Kernel Static Source Code Analysis 43
Firmware Analysis 49
iCamera Analysis 55
Network Function Calls 57

Buffer Overflow 67
File Access 74
System 75
Notable Findings 75

Firmware Visual Analysis 75
Binwalk - Entropy 76
Pixd 79

Port Scanning using nmap 84
Binary Analysis of jz_fw.bin 86

Conclusions 91

References 93

1



Executive Summary
Home security has always been a necessity and with the continuing advancement in technology,
home security devices from companies like Ring and Nest have become available to
homeowners. Unfortunately, these products are usually very expensive and many people look
for cheaper alternatives. These alternative devices may be conveniently cheaper and appear to
offer a similar level of service compared to name brand devices, but they are what customers
pay for and are not usually designed with protecting the devices in mind. They tend to have
vulnerabilities that can be exploited, creating an easy attack vector for attackers.

One such device is the Wyze Cam security camera. This device is well known for its
“hackability”, as there are documented techniques, including tutorials, on how to download and
modify the firmware. The team’s objective is to perform a firmware analysis on the device
firmware to identify the software components and potential vulnerabilities that could be
exploited. The team will then provide a write up documenting our findings, including description
of the vulnerabilities, how they could be exploited, and what they would allow an adversary to do
with the device.

2



The Team
Brandon Perkins
I graduated from Virginia Commonwealth University in 2015 with a Bachelor’s degree in
Computer Science and have been working in software development and testing focused in
cyber security for 7 years now. I have 12 years of experience in linux (7 professional years), 10
years of python experience (7 years professional), and about 4 years of experience in C/C++.

Steve Routh
I currently work for Johns Hopkins University Applied Physics Laboratory (JHU-APL) in Laurel
Maryland as a Systems Engineer. Prior to working for JHU-APL, I performed system- and
component-level design, integration, testing, and troubleshooting of hardware and software on
Naval air and surface platforms. My undergraduate degree is in Electrical and Computer
Engineering from Drexel University. I have experience with C, Linux, Python, and Assembly.

Samridha Murali
I graduated with a Bachelor’s of Technology in Computer science and Engineering from Manipal
Academy of Higher Education with a minor in Network and Security in 2021. I have worked in
industry as a software development intern and Software reliability engineer intern. I am
proficient in Linux, Python, C, Social engineering.

Sumanth Thyagarajan
I graduated with a Bachelor’s of Technology in Computer science and Engineering from
SASTRA University, India, in 2018. I have 3 years of experience in cybersecurity as an Identity
and Access Management - Software developer. I have sufficient experience with Linux, C, Java,
and python.

Michael Lindsey
I graduated with a Bachelor’s in Computer Science and a minor in Cybersecurity from the
University of Maryland in 2021. I have worked in the industry as a software developer intern and
a security engineer intern. I have sufficient experience with Linux, C, and Python. My
cybersecurity area of interest is binary exploitation.

Team Collaboration
For communication we will be using a combination of Zoom and Signal. Report collaboration will
be done over Google Docs.
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Related Works and Background
The Wyze camera is marketed as a security camera. It records video and sound, which may be
uploaded to cloud storage and playback service. The device has a built-in speaker and
microphone for 2-way communication, WiFi adapter, color night vision, and is compatible with
iPhone and Android devices [1].

Wyze has more than 1 million users. Communications requests between mobile devices, Wyze
products and AWS are made via https. Each handshake is validated by the camera's own secret
key and certificate [2]. Wyze uses AES 128-bit encryption to protect confidentiality of the live
stream and playback data. Wyze uses Two-factor authentication to secure accounts, with
secondary authentication token or code.

There have been many documented exploits and firmware hijacking attacks performed on the
Wyze Cam. Most of the existing attacks and POCs on the Wyze camera focuses on feature
unlocking, theft of services, performing Man in the Middle attack [3], and starting new services
on the device [4]. The security researchers and firmware developers were able to enable telnet,
redirect logs and recordings to NFS, enable RTSP for live streaming , and archive recording [5]
[6] [7].

Wyze Cam V3 had an Authentication bypass vulnerability (CVE-2019-9564) [8] and a Remote
control execution flaw caused by a stack-based buffer overflow (CVE-2019-12266) [9]
vulnerabilities before v4.36.8.32. When these two vulnerabilities are used in combination,
malicious actors can gain remote access to the camera's video feed [10]. On March 17, 2022, a
new patch with security improvements was released for Wyze Cam V3 [11].

For remote authentication, the client that needs to be authenticated should send an Input/Output
Control (I0Ctl) command with ID 0x2710 to the device. To that, the device generates a random
value and encrypts it with a 16-byte “enr” (AES encryption key), and sends it to the client. Since
the “enr” (key) is known to the client, it decrypts it and sends the decrypted value back to the
device in an I0Ctl command with ID 0x2712. If the value matches, the client is authenticated.
According to a whitepaper published by BitDefender, when the client sends the 0x2710
command, the device stores the generated random value in memory. When the 0x2710
command is not sent the memory remains NULL. So, when a client sends a 0x2712 command
with authentication bytes set to NULL, the device compares NULL with NULL and authenticates
the client. After authentication, the device is fully controllable including toggling the camera
on/off, enable/disable recording to SD, and motion control (pan/tilt). However, live audio and
video feed cannot be read because it is encrypted with the “enr” (key), unless the buffer
overflow in the next paragraph is exploited [12]. (CVE-2019-9564)

Buffer overflow vulnerability can be exploited by sending an input of size 0x7f or more with the
I0Ctl command with ID 0x2776. It will overwrite the return address of the function. In the
request, the length of the buffer is specified in the first byte, then the buffer [12]. This attack
could allow remote code execution on the camera device. (CVE-2019-12266)
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Furthermore, the content of the SD card can be read through the webserver running on port 80
of the device. When an SD card is inserted, the device creates a symlink in the www directory
which is served by the webserver. The SD card also holds the log files, which may include the
“enr” (key) and Unique Identification Number (UID) values that could be used to connect
remotely. [12] There is no CVE for this vulnerability, but was fixed in a firmware release January
29 2022 [13].

Tools like Trommel and Firmwalker scans through the embedded devices file to identify the
potential vulnerable indicators. These tools search in the extracted firmware filesystem for
vulnerabilities and things of interest like passwords, configuration files, scripts, URLs, email
addresses, web servers, etc [14][15].

The Wyze Cam camera implements a weak encryption algorithm for its communication. The
security researcher was able to compromise the device and disclose sensitive information like
users' email addresses, passwords, WiFi network names, and WiFi passwords [16].

Based on the DMCA security research exception, it is legally allowed to perform security
research on IoT devices and Firmware analysis for classroom purposes. Any vulnerabilities
found during this process will be disclosed responsibly to the company/vendors without violating
the DMCA [17] [ .

Project Description

Project Idea

Our project idea is to perform firmware analysis on an IOT device in the hope of finding
vulnerabilities that could be exploited by a malicious attacker. The device that will be performing
our analysis on is the Wyze Cam V3. The Wyze Cam V3 is a small IOT camera that allows for
live surveillance through the “Wyze” smartphone app. The firmware for the Wyze Cam V3 is
hosted on the website of its manufacturer for anyone to download. We plan to download the
firmware and perform a variety of analysis techniques on it until we have a solid understanding
of the device and/or have identified potentially exploitable vulnerabilities.

Implementation of Project

We will start by performing manual analysis on the firmware. This manual analysis will include
using tools like binwalk to dissect the firmware and command-line tools (like find and grep) to
search the firmware’s file system for notable artifacts. After a thorough manual analysis, we will
use automated analysis tools (like trommel and firmwalker) to identify possible vulnerabilities in
the firmware. If there are any vulnerabilities identified by the automated analysis then we will
follow-up on any identified vulnerabilities with manual analysis. If there aren’t any vulnerabilities

5



identified by the automated analysis tools then we will perform manual vulnerability analysis
(static analysis, dynamic analysis, fuzzing) on custom binaries in the firmware. If we are able to
find an exploitable vulnerability then we will develop a proof-of-concept exploit and test it on the
Wyze Cam V3.

Required Materials

1. Wyze Cam V3 Firmware
2. Manual Analysis Tools (binwalk, find, grep, etc.)
3. Automated Analysis Tools (Trommel, firmwalker, etc.)
4. Linux Environment (or Linux VM)

Optional Materials (only needed if exploitable vulnerability is found)

5. Wyze Cam V3 (only need if found exploitable vulnerability)
6. Wyze App for Android / iPhone (allows the user to interface with the camera)

Milestones

● Perform preliminary manual analysis on Wyze Cam V3 firmware
● Map out important components of firmware
● Perform automated vulnerability analysis
● Perform manual vulnerability analysis
● [Optional] Develop POC exploit for identified vulnerabilities

Timeline

4/12 - Finish manual analysis of firmware and mapping of important components
4/19 - Finish automated vulnerability analysis
4/26 - Finish manual vulnerability analysis and any exploit POC
5/2 - Finish final presentation and final report

Project Results

Hardware Analysis
The hardware analysis focused on the holistic capabilities of the board, specific to the boot
processes and instruction set characteristics. This supported analysis of system boot, and
binary analysis of the firmware based on the Ingenic T31 System on Chip (SoC) instruction set.
As you will see, a memory map has been partially created, identifying sections of memory
pertinent to u-boot and Linux. Memory assigned to peripherals was not included due to time
constraints and depth of analysis, however is available to be completed in the future.
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U-boot was accessed via JTAGULATORTM (http://www.grandideastudio.com/jtagulator/) and the
Linux virtual machines (VM). A noble attempt at soldering wires to six test pads was attempted,
with disappointing results, and is left for a future attempt.

Hardware was emulated using Firmadyne software provided on the class VM. Root access was
gained on the emulated system. However, root access was not gained on the actual Wyze
camera hardware. Attempts to do so will be described in detail.

Physical disassembly

The electronics are housed in a waterproof exterior with rubber gaskets sealing the front face
with camera lens, rear USB wiring. The USB port and setup switch face towards the bottom,
with rubber protective covers. A speaker is mounted to the upper rear portion of the case and
sealed in place with silicone. Silicon is also placed over the USB wire entry point below the
speaker. The case is assembled with three recessed phillips-head screws. A hobby screwdriver
can be used to remove the screws. Rubber plugs cover the screws in the recessed openings. A
plastic white frame covers the openings and presents a finished appearance. These features
can be seen in the pictures in Figure A-1.

Figure A-1: Clockwise from left: camera front, left side, rear, and bottom [19]

Three wires connect the electronics to the case: a front light sensor, the rear speaker, and the
rear USB cord. Care should be taken to not stress these wires during disassembly. The front
sensor and speaker can be disconnected from the board, however the silicon securing the USB
cable will need to be removed to relieve strain while analyzing the components. Figure A-2
shows the electronics removed, with the speaker and USB wires running toward the back.
Notice the speaker and USB cable connect near each other on opposite sides of the top board.
Also notable is that the top board houses most of the integrated circuit components.
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The electronics components are mounted on two printed circuit boards (PCB) connected by a
wire bus. The boards are folded on top of one another and connected by more screws (also
phillips head).

Figure A-2: Case with electronics partially removed [19]

Component Identification and Analysis

The internal electronics consist of two PCBs connected by a wire bus. The boards are held
together by the plastic housing and phillips head screws. The front board contains the infrared
Light Emitting Diodes (LED), Secure Digital (SD) card reader, switch, six test points, and 20-pin
cable connector. This board can’t be seen in Figure A-2 because of it’s placement between the
black front plastic face and the visible rear board.

The rear board is easily seen in Figure A-2, facing upward and provides the insertion points for
the Integrated Circuits (IC). Installed on it are the microprocessor, wifi, sound, and optical chips;
USB, speaker, light sensor, and 20-pin cable connectors; WiFi antenna; and through-holes for
Universal Asynchronous Receiver-Transmitter (UART) connections. For the purpose of
component identification, the terms “primary” and “secondary” will be used to identify one board
from the other. The board visible in Figure A-2 will be identified as the “primary” board.

Primary Board Analysis
The primary board (Figure A-3) provides insertion points for multiple IC, power, speaker, and
20-wire bus. Clockwise from top center: 128 MB flash memory, Realtek TRL8189FTV 802.11n
WiFi processor (green PCB) w/ 26.0 MHz clock and WiFi antenna, Ingenic T31 MIPS32 System
on Chip (SoC), 24.0 MHz clock, and power conditioning completing the cycle on the bottom left .
The SmartSens SC4335 image sensor and Broadchip BCT8933 audio amplifier are located on

8



reverse side center and top right respectively, as shown in Figures A-4 and A-5. [19] directly
references the Ingenic T31 and Realtek 8189 chips but not the other components.

Figure A-3: Primary board (side A)
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Figure A-4: Primary board (side A, labeled)

Figure A-5: Primary board (side B)
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Figure A-6: Primary board (side B, labeled)

Ingenic T31 SoC

The Ingenic T31 is a System on Chip design and is comprised itself of the XBurst1 Central
Processing Unit (CPU) (1.5 GHz, dual coprocessors, 128 bit SIMD Engine), integrated 128 MB
DDR, video processing, RISC-V core @ 500 MHz, audio codec, UART/SPI/I2C/JTAG
interfaces, and onboard encryption services.

Figure A-7: Ingenic T31 System on Chip [20]
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The T31 can be dual-booted (Figure A-8) and claims to be image-stable by 200 ms using
auto-exposure and auto-white balance hardware acceleration. Initial boot is assumed to be
accomplished by the RISC-V processor [21], which then bootstraps the XBurst1,but this has not
been confirmed by other sources.

Security support by the T31 includes Secure Boot and on-board encryption (AES, DES, RSA,
SHA, TRNG, OTP).

Figure A-8: Ingenic T31 Specification [20]

The T31 SoC uses a robust set of interfaces, some of which are used for internal
communications or with other chips on the PCB. This includes UART, JTAG, I2C, and SPI.
These interfaces are identified in Figure A-9.
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Figure A-9: T31 pinout assignments

Of particular note are pins 73 and 74, which lead to through-holes on the PCB. The other
interfaces (except JTAG) are assigned pinouts, but don’t lead to through-holes and therefore
require a little more work to access. This is shown in Figure A-10.
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Figure A-10: T31 pin assignments which may be externally probed

The pins of note are color coded, and were visually traced to the color coded through-holes (in
the case of the UART pins), or via’s (as in the case of the SPI pins). The Reset and Boot Select
pins are noted (for possible future use) but not traced. The UART through-holes are outlined in
purple at the bottom of Figure A-10. The SPI and I2C pins lead to vias on the PCB.

Using this diagram and [24], the data flows were traced to the different components on the PCB
as shown in Figure A-10.
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Figure A-11: Wyze Cam v3 Block Diagram

This diagram can be easily translated to the physical components as shown in Figure A-12.
Figure A-12 provides the legend for the color codes. The dashed lines identify assumed
communications paths and have not been verified. Verification and validation of these traces are
left for future work. Although a JTAG interface is identified in the programmer’s manual [22], it is
not present on the schematic. I’m assuming that is because it is used internally to the T31 SoC,
but this too should be verified.

Figure A-12: Pinout traces from the T31 to other locations
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XBurst1

The XBurst1 core CPU is based on the MIPS 32 bit revision 1 (MIPS32 Release 3) Reduced
Instruction Set Computer (RISC) architecture. It has a 9-stage pipeline. It has 32 registers, each
32 bits wide. The Data Cache (D-Cache) and Instruction Cache (I-Cache) are each 32KB in
size, which implies a Harvard architecture. It has a Memory Management Unit (MMU) that is 32
bits wide, supports page sizes of 4KB to 16MB for any entry, and can address 4GB of address
space [22]. The MIPS DSP ASE Revision 2, MIPS MT ASE, SmartMIPS ASE, MIPS DSP
Extension and trace logic are not implemented. Vectored inputs are implemented [22].

Additional details for the T-series processors can be found in Figure A-13.

Figure A-13: Ingenic processor specific notes [22]

Registers
The XBurst1 has 32 registers, each 32-bits wide.

Six kernel scratch registers are used for temporary storage of information and implemented at
register 2,3,4,5,6 and 7. CP0 Register 15, Select 0, contains the company ID, processor ID, and
revision [22].

The CPU number is identified in CP0 Register 15, Select 1. CP0 Register 12, Select 0, contains
the operating mode of the CPU (kernel or user) and coprocessor information. Supervisor mode
is not implemented [22].

Debug registers are CP0 Register 23 Select 0 and Select 6. Debug exception and save
information is included in CP0 Register 24 Select 0 and 31 Select 0 [22].
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Memory Management Unit
The XBurst1 contains an on-chip MMU which performs address translation. The MMU is 32
bits wide, supports page sizes of 4KB to 16MB for any entry, and can address 4GB of address
space. A virtual memory map is shown in Figure A-14. User space (kuseg) is from 0x0000 0000
to 0x7FFF FFFF. This virtual address space may or may not be identical to the physical address
space, depending on the status of the configuration registers. When kuseg does address a
virtual space, the address is extended by an 8-bit ASID field to form a unique virtual address.
kseg0 and kseg1 translated from virtual to physical by subtracting 0x8000 0000 or 0xA000 0000
from the virtual address. In kernel mode, the first three bits of the address determine which kseg
is selected [22].

Figure A-14: Virtual Memory Map [22]

A mapping of the u-boot and kernel space was created from the u-boot output, binwalk output,
and Ingenic T31 documentation. This memory map is shown in Figure A-15. It is incomplete,
however, and should be updated to include peripherals and other missing information. The
Linux Entry points (there are two shown) need to be resolved; one was observed during u-boot,
the other came from binwalk [22].
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Figure A-15: U-boot and Linux Kernel Memory Map (incomplete)
JTAG
JTAG operates in either MIPS or ACC mode. Mapped/unmapped address space details can be
found in [22] for the debug modes [22].

Instruction Set Architecture (ISA)
The XBurst1 is based off of the MIPS32 revision 1 (MIPS 32 Release 3) architecture. It
implements the MIPS32 instruction set to address the need by video, graphical, image, and
signal processing. It also uses SIMD extensions. The XBurst ISA is called the MIPS
extension/enhanced Unit2 (MXU2). It supports 8, 16, 32, and 64 bit signed and unsigned
integers; 32 bit single precision and 64 bit double precision floating points. It uses 32 general
purpose registers, vr0 through vr31, each 128 bits wide, and two control registers (MIP and
MCSR). It allows operations on byte, halfword, word, doubleword, and vector sizes. The
instruction format, in general, is [23]

Instruction vrd, vrs [, vrt]
Where:
vrd is the destination register
vrs is the source register / operand 1
vrt is operand 2

Secondary Board Analysis
The secondary board consists of the infrared Light Emitting Diodes (LED), Secure Digital (SD)
card reader, switch, six test points, and 20-pin cable connector. The most interesting thing about
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this board are the six test points, visibly labeled TP1 through TP6. An attempt was made to
solder wires to this board, which damaged the PCB. Particularly, the solder unintentionally bled
over to a pad next to TP6. A continuity test showed they were the same point. So I cut/scraped
the solder between TP6 and the square pad hoping to break the connection. I achieved my
goal. I realized that I damaged the board when under test it wasn’t behaving as expected
(multiple resets in a never-ending loop). When I bought a new camera and performed a
continuity test between TP6 and the square pad next to it, I realized they are the same point by
design. The soldering performed is shown in Figure A-16.

Figure A-16: Soldering the test points on boards 1 and 2

Other mistakes with this board, contributing to rendering it unusable, were: the 20-pin cable
connecting the boards was crimped due to rough handling; while under test, the GND pin on the
primary board (the outermost pin) was connected to +3.3V. The pin assignments, from left to
right as in Figure A-16, are: GND, transmit, receive. For the TP# points, TP5 is confirmed GND
(via continuity test with the WiFi antenna on the primary board).

UART Access
UART access is available by the three through-holes located at the bottom of the primary board.
The test setup used JTAGULATOR as a means to both identify the TXD and RXD pins, and as a
UART passthrough allowing a serial connection to the Wyze camera. The test setup is shown in
Figure A-17. Clips were used instead of soldered connections.

Walking through the process, the first step is to identify the ground connections on both the unit
under test (UUT) (which is the Wyze camera) and JTAGULATOR. A continuity test identified the
GND through-hole by touching one probe to the through-hole and the other probe to the WiFi
antenna on the UUT. A black clip was connected from the GND through-hole on the UUT to the
GND pin on the JTAGULATOR. Another continuity test was performed, this time one probe
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touching a GND pin on the JTAGULATOR, and the other probe touching the WiFi antenna.
Continuity was confirmed. A yellow clip was attached to the middle through-hole and to the
channel 1 (ch1) pin on the JTAGULATOR. A red clip was attached to the innermost
through-hole, and then connected to ch0 on the JTAGULATOR. Careful not to connect either the
red or yellow wire to the VDJ pin (just about the GND pin) on JTAGULATOR or the board may
become damaged. Finally, test that the yellow and red connectors are not grounded.

Figure A-17: Setup for UART access

First connect the UUT to power using the white USB connector. Then connect the
JTAGULATOR to power using the built-in USB port. This completes the physical connections.

Now spin up your VM. Disconnect power from the UUT (or JTAGULATOR) and reconnect. A
pop-up window like the one shown in Figure A-18 should appear. Select your VM from the list
and close the pop-up.
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Figure A-18: Connection pop-up for the JTAGULATOR connection

If the pop-up disappears after 10 seconds or so, you can either repeat the disconnect/connect
procedure described above or (if using VMWare) goto the VM drop-down menu, select
“Removable Devices”, then “Future Devices FTR232R USB UART”, and then “Connect
(Disconnect from Host) as in Figure A-19. This will connect the JTAGULATOR to your VM.

Figure A-19: Connecting JTAGULATOR to your VM (Ubuntu VM on VMWare shown)

Next we need to establish a serial connection to the JTAGULATOR. To do so, either connect to
using Putty software, or from the command line using screen. But first we must identify the
communications port on which the VM is connected to the JTAGULATOR. To do so, open a
terminal on your VM and type “dmesg | grep tty”. If the JTAGULATOR is connected to the VM,
we should see it in the Linux response as in Figure A-20.
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Figure A-20: Finding the COM port of the JTAGULATOR.

If the JTAGULATOR becomes disconnect, either intentionally or through some other means, the
response to the “dmesg | grep tty” will include multiple “connected” and “disconnected”
messages with timestamps. In the example of Figure A-21, the last timestamp at 70314.004053
confirms that the FTDI USB serial device is connected to ttyUSB0.

Figure A-21: Example output from “dmesg | grep tty”

The connection should also be listed in the /dev directory, as shown in Figure A-22.

Figure A-22: Inspecting the /dev directory on Linux

Once the communications port is identified, the next step is to establish a serial connection. I
used Putty, but you can use the tool of your choice. Use a connection speed of 115200 baud
and enter the connection port into the “Serial line” text box. Select the “serial” radio button. Then
click “Open”. These settings are shown in Figure A-23.
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Figure A-24: Serial connection settings

The terminal window should look like something similar to the top of Figure A-25. Type ‘h’ for
help.

Figure A-25: JTAGULATOR terminal

Type ‘U’ for UART. Again, type ‘h’ for help. To set the voltage, type ‘v’. Set the voltage to 3.3V by
typing ‘3.3’ and then enter. JTAGULATOR will warn you that VADJ pins on the PCB should not
be used for this configuration. To identify the TXD and RXD pins, type ‘u’ then enter. Enter 0 for
the starting channel and 1 for the ending channel. No pins are known, so type ‘N’ or leave the
answer to “Are any pins already known?” as default. JTAGULATOR is letting us know it will test
two permutations: TXD on through-hole 0 and RXD on through-hole one, then TCD on
through-hole 1 and RXD on through-hole zero. The next prompt asks for a text string. Leave this
blank by typing enter. Leave the delay as 10ms (or enter 10 if it is not already set). Leave
“ignore non-printable characters?” to the default of No. And then press the spacebar to start.
These entries are shown in Figure A-26.
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Figure A-26: JTAGULATOR entries for identifying the transmit and receive through-holes

The response should look similar to Figure A-27. The correct configuration is the longest set of
data. In this example the TXD through-hole is associated with the yellow wire (the middle
through-hole) and RXD is associated with the innermost through-hole (the red wire) as shown in
Figure A-17.

Next, type ‘p’ and then enter. The terminal will prompt you for the TXD pin, RXD pin, and baud
rate. The baud rate should be set to 115200 and set the “enable local echo?” to ‘n’. Press enter
twice. “WCVC login: “ should be shown on the terminal, indicating a successful pass-through
connection from the VM to the camera.
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Figure A-27: JTAGULATOR output

Analysis of the U-boot Output
After having established a serial connection with the camera by leveraging the UART interface,
power-on (or disconnect and reconnect power to) the camera. The camera will output data to
the terminal during the boot process similar to Figure A-28. This information was used to inform
the memory map of Figure A-15.

Figure A-28: Memory test portion of the U-boot output
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The U-boot version, SPL 2013.07 (Dec 21 2020 - 18:19:28), is shown in the first line of Figure
A-28. Figure A-29 shows the rest of the U-boot output during the memory test.

Figure A-29: U-boot memory test

After the memory test, the processor type is identified as the T31. This presumably identifies
when the T31 XBurst1 core is booted and configured. Virtual memory addresses are shown in
Figure A-3. The stack pointer is initialized to 0x81f6_ef48. Memory is reserved for U-boot from
0x83f9_0000 to 0x8400_0000. The “image entry point”, as shown in Figure A-29, presumably
represents start of the U-boot image that will execute next from the onboard flash memory.
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Figure A-30: U-boot image memory allocations

Next the GPIO assignments are listed, as shown in Figure A-31. This is also where the SD card,
if inserted, would be recognized. If a suitable binary is on the SD card, named demo_wcv3.bin,
then the flash process will begin.
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Figure A-31: GPIO allocations

After this, the Linux kernel is booted. The top few lines of this output are shown in Figure A-32.
Shown are the architecture (MIPS), location of the onboard (“legacy”) image at 0x8060_0000,
the Linux kernel version, size of the kernel, and the address of the kernel 0x8041_6900. The
“entry point” is presumably

Figure A-32: Start of boot for Linux kernel
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The remaining U-boot output is shown in Figure A-33 through Figure A-37. There is future work
needed to complete the memory map from the U-boot output, debugging, and other sources.
Figure A-15 shows the current memory map.

Figure A-33: Terminal output while the Linux kernel boot (1 of 5)
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Figure A-34: Terminal output while the Linux kernel boot (2 of 5)
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Figure A-35: Terminal output while the Linux kernel boot (3 of 5)
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Figure A-36: Terminal output while the Linux kernel boot (4 of 5)
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Figure A-37: Terminal output while the Linux kernel boot (5 of 5)

Hardware Emulation
The hardware was emulated using Firmadyne software. Firmadyne uses QEMU to emulate the
underlying hardware. This walkthrough won’t describe the process of installing and configuring
the Firmadyne software on your VM.

The commands entered for a successful emulation were modeled after the website’s “Usage”
section available at [24]. The figures that follow will support the step-by-step procedure below.

The binary must first be extracted from the camera firmware zip file. The zip file is available on
Wyze’s website. Note the directory where the commands are being executed. It’s recommended
to execute these commands from the Firmadyne home directory as defined in the configuration
file. To extract the binary, type the command at the top of Figure A-38.
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Figure A-38: Extracting the Wyze cam v3 binary

At the end of the extraction process, a compressed tarball should have been created under the
images folder. Note the Database Image ID. You will be using it later in other commands. The
‘-b’ flag can be any string that represents the brand name of the device. The ‘-np’ and ‘-nk’ flags
represent no kernel and no parallel operation. The command seemed to work, so we moved on
and didn’t question the flags. Observe how in Figure A-38 the file system is identified as
Squashfs and little endian.

The next two commands identify the architecture and store in the SQL database the value and
other select information from the firmware. These two commands are shown in Figure A-39.
Notice that a password is requested. If the installation instructions were followed, it should be
“firmadyne”.

Figure A-39: Get the architecture of the firmware

Type the next command as shown in FigureA-40. This will create the QEMU image.

34



Figure A-41: Create the QEMU image

One last setup command gathers network information and saves it to the database. See Figure
A-42.

Figure A-42: Gather network information
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If the setup was successful, the next command should run the emulation. Your output should be
similar to that in Figures A-43 through A-49.

Figure A-43: Emulation of the firmware (1 of 7)

36



Figure A-44:Emulation of the firmware (2 of 7)
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Figure A-45:Emulation of the firmware (3 of 7)
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Figure A-46:Emulation of the firmware (4 of 7)
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Figure A-47:Emulation of the firmware (5 of 7)
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Figure A-48: Emulation of the firmware (6 of 7)

Figure A-49: Emulation of the firmware (7 of 7)
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The emulation will mount the filesystem onto your VM. You may search the filesystem manually,
and change any value you wish. Just use chmod to change the permissions first. This is what
we did with the shadow file. The shadow file contains the password hash for each user. By
changing the hash, we can control the firmware for debugging sessions and further analysis.
This activity is left for future action. Figure 47 shows the command-line perl script used to create
the hash (SHA512 with ‘wyzecam3’ as salt).

Figure A-50: Creating a password using SHA512

The output of the perl script, starting at $6 and ending at the newline (‘...P1’), was copied and
inserted into the shadow file. The old root hash was retained and renamed ‘oldroot’. The
shadow file was saved to its original location (Figure A-51).

Figure A-51: Updating the shadow file

For the new password to work, restart the emulation. Then type in ‘root’ for username, and your
new password (we used ‘password’). We gained root access to the emulated firmware, shown in
Figure A-52.

Figure A-52: Root access achieved in the emulation

This is as far as we got with the emulation. Future efforts to analyze the firmware using
emulation are left for future action.
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In the meantime, we’ve provided the hash to a program called hashcat. Hashcat is a password
cracking utility freely available. We need to tell hashcat the hash format (1800 UNIX/SHA512)
and a mode. The mode we chose was brute force with a rule set. The rule set developed was
based on previous Wyze camera passwords that are publicly known. The three passwords are:
‘WYom2020’, ‘WYom20200’, and ‘ismart12’ for user root. We setup a ruleset which requires a
lowercase or uppercase ‘w’, and another rule which requires the last two characters to be a
number. We also told hashcat to specifically try some other characteristics, including: the year
2020 or 2021 on the end; the year 2020 or 2021 on the end followed by another number; and
look for occurrences of ‘v3’ somewhere in the string.

The PC on which it is running has an AMD 1700 microprocessor (first generation Ryzen 7), with
a separate Radeon RX5700XT graphics card (generation 5). The host operating system is
openSuse ‘Tumbleweed’. The amdgpu driver was installed, needed for hashcat to recognize the
graphics card. Different versions of Ubuntu (Ubuntu 14, 16 and 18; the latest Kali version; the
latest popOS). Also attempted was using a laptop, and leveraging the onboard discrete NVIDIA
graphics. None of these configurations didn’t work (the libraries required for the driver were
either deprecated or not available to that version of Ubuntu), and the laptop overheated. Cloud
GPUs were also considered, however they were too expensive. The amdgpu drivers are
compatible with three flavors of Linux: Ubuntu, Red Hat, and OpenSuse. We downloaded the
latest OpenSuse (Tumbleweed) operating system image and installed it. We then installed the
amdgpu drivers. Even though some warning were issued during the install (again, deprecated
libraries), hashcat recognized the GPU (type ‘hashcat -I’ into the command line)!

Thus far, hashcat has been running for more than 7 days. It has not yet cracked the password.
Occasional crashes have occurred, however hashcat can be configured to resume where it left
off.

Linux Kernel Static Source Code Analysis
We acquired the latest version of the T31 chip’s SDK on Github. We also located the latest
DLinux kernel source code from the WyzeCam website for the V3 camera and downloaded that
as well (Figures B-1 and B-2).
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Figure B-1: Ingenic T31 SDK

Figure B-2: WyzeCam V3 Source code

The WyzeCam source code indicated that the Linux Kernel version is 3.10.14 and the T31 Chip
was determined to be 3.10.14 as well during the firmware analysis. We used the CVE Details
(Figures 3-B and 4-B). data source website to look up all CVEs related to the 3.10.14 kernel.
The site listed 48 potential CVEs for this kernel version, however we focused only on the most
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critical CVEs based on CVSS scores due to time constraints presented to us and the large
amount of source code that needed to be inspected. The threshold for the cutoff was a CVSS
score of 4.9 which still allowed us to inspect 17 CVEs.

Figure B-3: CVE page filtered for Linux Kernel 3.10.14

Figure B-4: Page for CVE-2013-7287 as a sample

Before performing the actual code analysis, a diff was run between the T31 kernel files and the
WyzeCam Kernel files in order to measure the differences between the two as well as check if
any of the functions affected by CVEs had been modified between the two (Figure B-5). None of
the differences found from the diff were related to the CVEs we inspected. This indicates that for
any CVEs that were not patched and if the WyzeCam V3 T31 chip were to be updated with a
newer version, it would still not address any CVEs that had not been patched.
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Figure B-5: Sample output from diff.

The source code analysis starts with identifying the patch for each CVE. The patch is located at
the bottom of each CVE Details entry in the form of a github link to the commit that addresses
the CVE (Figure B-6). The commits show the code changes for each file modified to address the
CVE (Figure B-7). We first check the name of the function that is modified and see if it appears
in the diff. We compared the patched files against the files in the T31 SDK Kernel directory and
the WyzeCam kernel source files. If all of the necessary code changes from the patches exist,
then it is considered fully patched. If they do not, then we determine to what extent it has been
patched and whether or not the vulnerability is a threat to the WyzeCam device.

Figure B-5: Link to commit that patches CVE
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Figure B-6: Code changes in commit. Red means removed, Green (not shown) means added.

Out of the 17 CVEs we inspected, only one has been fully patched: CVE-2012-6638 [25] which
has a CVSS score of 7.8. This was the highest rated CVE for this kernel version due to the
simplicity of the exploit and how easy it is to reproduce on a vulnerable system by anyone with
minimal skill level required. The exploit involves flooding the target system with a specific
combination of packets (SYN+FIN) until it is rendered completely unavailable, causing a severe
denial of service attack (DoS). (Table B-1)

CVE CVSS Score Description

CVE-2012-6638
[25] 7.8 Allows attacker to execute DoS attack by flooding target

with SYN+FIN packets [25]

Table B-1: Patched CVEs

10 of the 17 CVEs we inspected were not patched nor appeared to be modified in any way. 3 of
them are not applicable however as they require certain functions and systems that the
WyzeCam does not utilize, such as KVM [33], Phonet [35], and L2TP [34]. 5 of the applicable
CVEs [28] [29] [30] [31] [32] requires local network access at the minimum to the device. This
means that an attacker would only be able to utilize these vulnerabilities in targeted attacks
where they have access to the network. This limits targets to home networks or small private
businesses that cannot afford better security camera options. So as long as the users practice
good network security, these CVEs cannot be exploited. The remaining 2 CVEs [26] [27] that
are applicable and can be exploited remotely involve modifying properties of packets and share
the third highest CVSS score of 7.1. (Table B-2)
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CVE CVSS Score Description

CVE-2013-3563
[26] 7.1 Allows remote attackers to perform DoS attacks using

large IPv6 UDP packet sizes [26]

CVE-2013-4348
[27] 7.1

Allows remote attackers to perform DoS attacks using
small values in the IHL field of a packet with IPIP
encapsulation. [27]

CVE-2013-7263
[28] 4.9

Allows local users to obtain sensitive info from kernel
stack memory using IPV4/V6 systems calls: recvmsg,
recvfrom, and recvmmsg [28]

CVE-2013-7281
[29] 4.9

Allows local users to obtain sensitive info from the kernel
stack memory using 802.15.4 (wireless) system calls:
recvmsg, recvfrom, recvmmsg [29]

CVE-2013-6378
[30] 4.4 Allows local users to perform DoS attack by using root

privileges for a zero-length write operation [30]

CVE-2013-4515
[31] 4.9

Allows local users to leak kernel information by exploiting
an uninitialized array through
IOCTL_BCM_GET_DEVICE_PRINTER system call [31]

CVE-2013-4516
[32] 4.9

Allows local users to leak kernel information by exploiting
an uninitialized array through TIOCGICOUNT system call
[32]

CVE-2013-4587
[33] 7.2 KVM vulnerability. NOT APPLICABLE [33]

CVE-2013-7264
[34] 4.9 L2TP vulnerability. NOT APPLICABLE [34]

CVE-2013-7265
[35] 4.9 Phonet Packet protocol vulnerability. NOT APPLICABLE

[35]

Table B-2: CVEs the WyzeCam kernel has not been patched for

7 of the 17 vulnerabilities are considered not patched however, there does appear to be signs of
modifications in the functions in the kernel source code related to these CVEs. The amount of
changes made is minimal and it is unknown what these modifications are for. However, given
the large number of source code files that had to be changed to patch the CVE, it is unlikely that
these modifications address the CVE. Fortunately, only one CVE can potentially impact this
device. With a CVSS score of 4.9, CVE-2013-7270 [41] allows local users to obtain sensitive
information from kernel memory through recvfrom, recvmmsg, and recvmsg system calls
through raw packets (af_packet). The other CVEs cover networking protocols [36] [37] [38] [39]
[40] that would not be used by the device. (Table B-3)
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CVE CVSS Score Description

CVE-2013-7270
[41] 4.9

Allows local users to obtain sensitive information from
kernel memory through recvfrom, recvmmsg, recvmsg
system calls related to raw packets (af_packet) [41]

CVE-2013-7266
[36] 4.9 ISDN Protocol. NOT APPLICABLE [36]

CVE-2013-7267
[37] 4.9 AppleTalk Protocol. NOT APPLICABLE [37]

CVE-2013-7268
[38] 4.9 IPX Protocol. NOT APPLICABLE [38]

CVE-2013-7269
[39] 4.9 Netrom Protocol. NOT APPLICABLE [39]

CVE-2013-7271
[40] 4.9 X25 Protocol. NOT APPLICABLE [40]

Table B-3: Modified CVEs

The ability to exploit these vulnerabilities requires knowledge of the device's existence and in
most cases also requires local access to the network. For several of these vulnerabilities,
significant modifications would have to be made to the firmware, such as installing utilities that
can take advantage of one of the many unpatched/modified CVEs, followed by the reselling of
the device to potential targets. Considering this, the threat of the CVEs that were covered in this
code inspection is low-to-medium and an attacker would have an easier time loading their own
custom software into the camera before reselling the device to potential targets.

Firmware Analysis
We downloaded the latest version of Wyze camera firmware (3_4.36.8.32). The downloaded
firmware is a zipped file. On running “binwalk -e” on the zip file, it didn’t mount the file systems,
as they were xz compressed. On manually extracting the zipped folder using nautilus file
explorer, we can find one empty folder and a blob. The output of running binwalk on blob is
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show in figure C-1

Figure C-1: Binwalk output

From the binwalk output, we can infer that the bootloader is Bootloader - U Boot legacy uimage,
and the firmware image is jz_fw. They are packed without any compression techinques. The OS
kernel image is Linux-3.10.14__isvp_swan_1.0__ and it is compressed using LZMA
compression technique. The instruction set is mips and the system is little endian. There are 2
file system images, both are XZ compressed and are little endian. Binwalk with -e flag didn't set
up the file systems. On running binwalk with no flags, it gave the position of each component
within the binary, so it is possible to cut each file system image from blob using the dd command
line tool. We can use “sudo mount” to mount on the file system, from the file system image.

File system 1 :
On mounting we can see that the file directory has a linux structure as shown in the figure 2. On
mounting the file system image using “sudo mount” the file system is read only. There are a total
of 349 files in the directory.
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Figure C-2: Structure of file system 1

Once the file system image is mounted we can run the scanning tools on it. On running
trommel, we were able to find that the firmware is using BusyBox v1.33.1. It is associated with
18 CVEs (CVE-2018-0099, CVE-2017-5671 ,CVE-2017-16544 ,CVE-2017-15874
,CVE-2017-15873, CVE-2017-14116 ,CVE-2017-14115 ,CVE-2016-6301 ,CVE-2016-5791
,CVE-2016-214 ,CVE-2016-2147 ,CVE-2014-9645 ,CVE-2013-1813 ,CVE-2011-5325
,CVE-2011-2716, CVE-2006-5050 ,CVE-2006-1058 ,CVE-2005-2136) according to trommel
false positives may exist. On running firmwalker, we were able to find that there is no trace of
SSH, SSL, database, openSSL related files in this file directory. There were 5 IP addresses in
the filesystem (4.36.8.32 ,1.2.3.2 ,4.3.24.7 ,3.4.4.3 ,8.8.8.8), but on testing them, they were not
vulnerable IP addresses. On etc folder, we can find a shadow file. Shadow file had the root
user's hash.

Figure C-3: Hash of root password

The hash has $6 in the beginning as shown in figure 3, this shows it is hashed using SHA512
hashing algorithm. Following it, there is wyzecmav3, which according to the format of SHA512
hash algorithm is the salt used to hash the password [42]. Following it we have the hash value
of salted password. The numbers following the hash tell other details like time to reset,
password expiry time etc, which are of no interest currently.

File system 2:

On mounting we can see that the file directory has a linux structure as shown in the figure 4. On
mounting the file system image using “sudo mount” the file system is read only. There are a total
of 169 files in that directory.
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Figure C-4: Structure of file system 2

On running trommel and firmwaker on the mounted file system, binary files cacert.pem,
hl_client, and iCamera seemed promising. On analyzing the hl_client file in the cutter tool, it can
be seen in figure 5 and figure 6 that fgets and strcpy are used in the binary. They can lead to
dangerous consequences, so it is better to avoid them.

Figure C-5: fget() function

Figure C-6: strcpy() function

Changing root hash and repacking the firmware:

When a file system image is mounted using ‘sudo mount’, the file system is read only and
cannot be edited. To get around this, we can use the sasquatch tool. On running the sasquatch
tool on file system image, it creates a directory from the file system image, which is read and
write-able. Since we know the type of hashing algorithm (SHA512) and the salt (wyzecamv3)
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used to produce the hash, we can pick a password of our choice, find the corresponding salted
hash value and then rewrite it in the shadow file. We have taken ‘esslp’ to be the password, and
replaced the original hash with the salted hash of ‘esslp’. The salted hash of esslp is shown in
figure 7.

Figure C-7: Salted hash of password ‘esslp’

To recreate the filesystem image we have used a command line utility mksquashfs. The output
of the running the tool on the modified file directory is shown in figure 8

Figure C-8: blob of modified file system 1

We can recreate the firmware back, using command line utility dd and cat. From the binwalk
output as shown in figure 9,we can see that the file system 1 starts from location 2031680
(decimal).

Figure C-9: Binwalk output of modified firmware
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Using dd command, we can copy everything before file system 1 into a new file, this file now
contains binary of bootloader, firmware and OS. Similarly using dd we copy file system 2 from
offset 6029376 into a file, which now will contain an image of file system 2. We have all the 3
parts in the required format as shown in image 10 , we can combine them using the cat
command line tool and write it into a new file, which will be the modified firmware image.

Figure C-10: Details of individual blobs

The modified firmware has same format as the original format, as shown in figure 11

Figure C-11: comparison of original and modified firmware image
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iCamera Analysis

The iCamera binary is of interest to us because it is one of the few custom binaries executed at
the startup of the Wyze Cam V3. The idea is to perform static analysis on the iCamera binary in
the hope of finding possible security vulnerabilities. The methodology that we take in this project
is to search for commonly vulnerable libc functions and check if they are used safely. In this
section we explore the iCamera binary and outline possible vulnerable function calls that an
attacker could use to exploit the Wyze Cam V3.

Figure D-1: Running file command on iCamera

The iCamera binary is located in the bin directory of the second squashfs filesystem.

Figure D-2: The app_init.sh startup script

The iCamera binary is executed at startup by the Wyze Cam V3 in the ./init/app_init.sh script.
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Figure D-3: Showing app_init.sh loads kernel modules

We know that iCamera is executed with root privileges because the app_init.sh script also loads
kernel modules. Because loading kernel modules requires root privileges we can assume that
app_init.sh is run with root privileges and therefore iCamera is run with root privileges.
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Figure D-4: Rabin2 output

Based on the file command and rabin2 we can see that iCamera is a 32-bit little endian mips
ELF binary that is dynamically linked and stripped of symbols. Rabin2 also indicates that
iCamera was written in C++.

Network Function Calls

Figure D-5: There is 1 reference found to the bind() libc function
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Figure D-6: Ghidra decompilation of reference to bind()

After some basic reverse-engineering we can assume that a pseudocode version of the bind
statement looks something like the following:

fd = socket(AF_UNIX, SOCK_STREAM, 0);
bind(fd, “wyze-audio-bitstream-receiver”, 0x6e);

This tells us that iCamera is binding a unix domain socket and not a network socket. Unix
domain sockets are used for interprocess communication so this would not be a good attack
vector since we can’t access this socket remotely.

Figure D-7: There is 1 reference found to the connect() libc function
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Figure D-8: Ghidra decompilation of reference to connect()

After some basic reverse-engineering we can assume that a pseudocode version of the connect
statement looks something like this:

fd = socket(AF_UNIX, SOCK_DGRAM, 0);
connect(fd, “/tmp/hualaiclient.domain”, 0x6b);

The iCamera binary is connecting to a local unix domain socket. This isn’t a good attack vector
because the connection isn’t over a network socket so we can’t access it remotely.

Figure D-9: There is 1 reference found to the send() libc function
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Figure D-10: Ghidra decompilation of reference to send()

After some more reverse engineering we found that the value of stored_unix_fd (which I have
renamed for clarity) is the unix domain socket returned from the connect() function call to
“/tmp/hualaiclient.domain”. Therefore since this send() doesn’t involve the network we don’t
consider it for our attack surface.

Figure D-11: There are 3 references found to the sendto() libc function
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Figure D-12: Ghidra decompilation of reference to sendto()
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After doing some reverse engineering it looks like iCamera is sending a ICMP packet in the
pseudocode form of:

fd = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP);
…
sendto(fd, ?, 0x40, 0, ?, 0x10);

From static analysis alone it is hard to tell what the exact data is in the ICMP packet and to
where the ICMP packet is being sent. Luckily we were able to spin up a hotspot and view the
traffic from the Wyze Cam V3 in wireshark.

Figure D-13: ICMP packet being sent to/from Wyze Cam V3

Figure D-14: Payload of sniffed ICMP packet

The Wyze Cam V3 has the ip address 192.168.12.195 and the hotspot access point (my laptop)
has the ip address 192.168.12.1. This means that the Wyze Cam V3 is sending an ICMP packet
to an access point with a data field of all zeros. It looks like it may be a form of a keep-alive
message. This is interesting but probably doesn’t lead to a vulnerability.
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Figure D-15: Ghidra decompilation of second reference to sendto()

Some basic reverse engineering results in the simplified pseudocode:

fd = socket(AF_UNIX, SOCK_STREAM, 0);
…
sendto(fd, ?, ?, 0x40, “wyze_h2bx_bitstream”, 0x6e);

Although we don’t know what it is sending (or the length), we know iCamera is sending data to a
unix domain socket. It looks like this specific unix domain socket is responsible for video. This is
mildly interesting but likely won’t lead to a vulnerability.

The last reference to the sendto() function call was very similar to the previous one except it
communicated over a unix domain socket to the address “wyze-g711-bitstream”. Once again it
probably won’t lead to a vulnerability.
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Figure D-16: There are 3 references found to the recv() libc function

The first reference communicates over a unix domain socket that we discussed earlier so it isn’t
of real interest to us.

The second and third reference receive over the unix domain socket that bind was called on
earlier (“wyze-audio-bitstream-receiver”). This isn’t of any interest to us from a vulnerability
research perspective.
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Figure D-17: There is 1 reference found to the recvfrom() libc function
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Figure D-18: Ghidra decompilation of reference to recvfrom()

Based on the recvfrom() function call’s proximity to the sendto() function call that sent out the
ICMP packets, and the fact that this recvfrom() uses the same socket as the sendto() call, we
reasonably conclude that this recvfrom is receiving the ICMP response packets. This is a
possible attack vector depending on how iCamera handles the buffer that the ICMP packet is
loaded into, and if it performs any checks validating the ICMP packet.
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Buffer Overflow

There are no references to gets() in iCamera.

Figure D-19: There are 9 references found to the fgets() libc function

All 9 references to fgets() are used safely. All calls to fgets use a size “n” that is less than or
equal to the size of the buffer that fgets is reading into.

Ex: buffer is size 108 and n is 100 so there is no risk of a buffer overflow.

Figure D-20: Ghidra decompilation of reference to fgets()
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Figure D-21: There are 41 references found to the strcpy() libc function

Figure D-22: Ghidra decompilation of reference to strcpy()
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This reference to strcpy() could be vulnerable depending if the src pointer &DAT_005dc058 can
be manipulated by an attacker. It is difficult to determine its vulnerability based on static analysis
alone and would probably need a closer look with dynamic analysis.

Most of the strcpy() calls seemed safe as the src parameter appears bounded, and unable to be
influenced by an attacker. There were a few strcpy() calls (like the one above) that copied from
a memory address, or parameter, whose contents are difficult to determine using static analysis.
Dynamic analysis would be useful in determining if these strcpy() calls are vulnerable to a buffer
overflow.

Figure D-23: There are 60 references found to the strncpy() libc function

69



Figure D-24: Ghidra decompilation of reference to strncpy()

Most of the calls to strncpy() were clearly bound correctly (like the example above). It was easy
to tell that these strncpy() calls weren’t vulnerable to a buffer overflow.

Figure D-25: Ghidra decompilation of second reference to strncpy()

Other strncpy() calls made it hard to tell if they were bound correctly (like the example above)
because the value for “n” was a memory address whose contents are hard to determine only
using static analysis. This is another example of when dynamic analysis would likely provide a
more concrete answer.
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Figure D-26: There are 477 references found to the printf() libc function

Figure D-27: Ghidra decompilation of reference to printf()

All references to printf() include a format string as the first parameter (like example above), so it
appears that there are no printf format string vulnerabilities.
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Figure D-28: There are 99 references found to the sprintf() libc function

Figure D-29: Ghidra decompilation of reference to sprintf()

Some of the references to sprintf() above could be vulnerable depending if the second argument
can be manipulated by an attacker. It is difficult to determine if it's vulnerable based on static
analysis alone and would probably need a closer look with dynamic analysis.
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Figure D-30: There are 7 references found to the fprintf() libc function

Figure D-31: Ghidra decompilation of reference to fprintf()

All calls to fprintf() are used safely as they all include a hardcoded format string as the second
argument (like the example above).
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File Access

Figure D-32: There are 21 references found to the fread() libc function

Most of the calls to fread() were clearly bound correctly. It was easy to tell that these fread()
calls weren’t vulnerable to a buffer overflow.

Figure D-33: Ghidra decompilation of reference to fread()

The fread() call above makes it hard to tell if it is bound correctly because the value for “n” and
the value for the buffer are memory addresses whose contents are hard to determine only using
static analysis. Dynamic analysis would likely provide a more concrete answer.
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System

Figure D-34: Ghidra decompilation of reference to system()

There is a possibility for local privilege escalation if we had a shell on the Wyze Cam V3. The
full path isn’t specified for ps and grep when they are passed to the system() command. We
may be able to use a path trick to force the iCamera binary into using a malicious version of ps
or grep.

There are many other cases in iCamera where the full path of a program is not being specified
when calling system().

Notable Findings

● A call to recvfrom() is used to read in ICMP packets over a raw socket. Memory
corruption could occur if the processing of the packet isn’t handled properly.

● Some strcpy() and strncpy() calls have arguments that may be unsafe, but their value is
difficult to determine through static analysis. Some of these function calls should be
further evaluated with dynamic analysis.

● It is difficult to determine if a proper format string is used for some sprintf() calls, but it is
unlikely that these calls are vulnerable to a format string exploit.

● Some fread() calls have arguments that may be unsafe, but their value is difficult to
determine through static analysis. Some of these function calls should be further
evaluated with dynamic analysis.

● There are multiple calls to system() where the full path of a program isn’t specified. This
could lead to local privilege escalation if the PATH of iCamera was hijacked.

Firmware Visual Analysis

Generally, firmware updates are downloaded in compressed form to save space. To analyze the
firmware, we must first determine whether it is encrypted or compressed. The visual analysis of
the binary is one of the techniques that can be used to analyze unknown binary files. Based on
the generated pattern image we can determine the instruction set and architecture of the
embedded system, identify vulnerability, find the difference between two firmware, perform
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security audits, and can be used to determine the security posture of the embedded system. We
used binwalk, binvis, pixd, bin2bm in this project to generate image patterns of the firmware[53].

Binwalk - Entropy

Entropy is a measure of the information density of the file and they are represented as a number
of bits per character[54]. If the entropy is very high meaning that there is a high chance that the
file is compressed or encrypted and cannot be used as it is for further analysis.

In binwalk, -E switch is used to find the entropy of the firmware[55].

Figure E-1: binwalk -B signature of demo_wcv3_4.36.8.32 and demo_wcv3_4.36.9.131

From the above E-1 image, we can see that the kernel version remains the same. Due to the
security fix, the size of the firmware is increased in the latest firmware.

Architecture: MIPS
Endianness: little
Kernel: Linux-3-10.14__isvp_swan_1.0
Compression type: LZMA
Image name: jz_fw
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Figure E-2: binwalk -E demo_wcv3_4.36.8.32

The image E-2 is generated on executing binwalk -E demo_wcv3_4.36.8.32 command and On
executing binwalk -E demo_wcv3_4.36.8.32 command image E-3 gets generated. Based on the
analysis, we could see that the entropy of the firmware image is near 1 which means that the
firmware is highly compressed. More numbers 0x00 were together in the firmware and it was
seen in the same firmware twice, due to this the firmware experienced a low entropy.
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Figure E-3: binwalk -E demo_wcv3_4.36.9.131

When both the firmware are compared, we could infer that the entropy of the latest firmware is
less than the previous version.

Figure E-4: Entropy comparison
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Pixd

Pixd is a tool based on hexdump and hexd, which uses a color palette to do the visualization of
the firmware data[56]. This tool can only be used to find the type of the architecture, address,
and its color code, determine the region where it has 0x00 values (black region), and can also
be used for comparing two firmware.

Figure E-5a: pixd for demo_wcv3_4.36.8.32 firmware
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Figure E-5b: pixd for demo_wcv3_4.36.8.32 firmware

Figure E-5a,5b shows the output from executing the pixd command on firmware. There are 3
black regions on the generated output image.

Figure E-6a: pixd for demo_wcv3_4.36.9.131 firmware
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Figure E-6b: pixd for demo_wcv3_4.36.9.131 firmware

Figure E-6a,6b shows the output from executing the pixd command on firmware. There are 3
black regions on the generated output image.

Analyzing the image visually, we can conclude that both are compressed and have different
values in their file.

Binvis

Binvis, is a tool used to visualize the files. This tool uses space-filling curves to generate the
image [57]. The Pink region on the generated image represents high entropy and the black
region represents low entropy. Since they generate unique patterns, they can also be used to
find if the firmware is modified[58].
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Figure E-7: binvis for demo_wcv3_4.36.8.32 and binvis demo_wcv3_4.36.9.131

82



Figure E-8: binvis for demo_wcv3_4.36.8.32

This tool also shows us the hex value, address, and entropy. As can be seen in the above
image the black region represents a 0x00 value and also this region has the lowest entropy.

Bin2bmp

Among the list of visualizing tools, bin2bmp is a tool that is developed in python[59]. This tool
also converts binary data into graphical form. The analysis of the binary can be difficult as it
requires scaling, and ther eis possibility that the image can get distorted.
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Figure E-9: binvis for demo_wcv3_4.36.8.32 and binvis demo_wcv3_4.36.9.131

Port Scanning using nmap

Port scanning is a technique that is used to find the open ports of a particular device. One of the
most common free and open-source tools used for port scanning is nmap [60]. This tool helps
us determine the OS, service running on the open ports, version of the service, protocol type,
vulnerable ports, and many others.

We connected the camera to the network by performing an initial setup. We can determine the
IP address of the camera using a command like nmap, fping, ping. The IP address can also be
found using the Wyze IOS application.
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Figure E-10: Wyze cam application - device info

As can be seen from the figure E-10, we found that the camera has an IP address of
172.20.10.4 from the device info page and executed below command to find open tcp ports.

.\nmap.exe -p- -T4 -Pn -vv 172.20.10.4

Figure E-11: nmap - TCP - before update

From the above image, we can conclude that there are no open TCP ports on the device that
are used for communication

As we already know that most streaming services use UDP for their communication, we
executed the below command to find open UDP ports.
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.\nmap.exe -T4 -vv -sU 172.20.10.4

Figure E-12: nmap - UDP - before update

We could notice that there are few ports in open|filtered status. We cannot concretely conclude
that these ports are open for communication as we don’t have a mechanism to check UDP
connection is established or not.

Since the device is still running the demo_wcv3_4.36.8.32 version of firmware, there is a
chance that a new port might open during an update and if new services are added to the
device. We could not capture the firmware update packets in Wireshark [61] as it requires a
network adapter in monitor mode.

After updating the firmware to demo_wcv3_4.36.9.131, we executed nmap command to find if
there is any change in the open ports.

Figure E-13: nmap - TCP - After update

After a successful update, we could see that no new TCP ports were opened but, on the UDP
scan, we could see it has detected a few more ports. Also, a few ports were closed after the
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update. The image below shows the additional ports that are in open|filtered status after the
firmware update.

Figure E-14: nmap - UDP scan - After update

It was challenging to analyze the open ports with the limited timeline, so we left it for future
action.

Binary Analysis of jz_fw.bin

We removed the Linux filesystem from the binary, leaving only a binary firmware package called
‘jz_fw.bin’. This binary was examined using a graphical version of Radare2 called Cutter. Cutter
requires the binary, as well as other clues, to help it disassemble the code. The information
provided to Cutter is shown in Figure A-53.
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Figure A-53: Cutter setup

The ‘load bin offset’ was taken from the binwalk output, and the ‘map offset’ was retrieved from
the memory map of Figure A-15. A sample of the disassembled code is shown in Figure A-54.
Cutter did understand many of the instructions, identifying them as simply “invalid”. Additionally,
it was noted that some of the function addresses were well above the limit of 0x8400_0000 as
shown in the memory map in Figure A-15. Larger functions (~1000 instructions or longer) were
interpreted as nop sleds, or branches to empty functions.

Figure A-54: Example of Cutter disassembly of jz_fw.bin
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Based on these issues, we provided different parameters to Cutter and re-ran the analysis.
Variations of parameters attempted include:

Architecture: mips, mips.gnu
Endianness: little, big
Kernel: Linux, none
Format: bootimg, Auto

Providing different parameters did result in different output. However, none of these input
changes resolved the issues.

Angr-Management is a similar tool used for binary analysis, and requires very similar parameter
inputs. The inputs were varied as;

Architecture: MIPS32, MIPS32/64
Endianness: little, big

Providing different parameters resulted in different output. However, none of these input
changes resolved the issues. See Figure A-55 for an example of the output.

Figure A-55: Example output from Angr-Management

We also tried Radare2 using the Command Line Interface (CLI). This provided the most
flexibility while improving the granularity of the inputs. ‘e’ Variables describing the architecture
can be defined from the command line. See Figure A-56 for an example.
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Figure A-56: Example showing command line instructions to define the CPU architecture

Help can be provided for a particular variable, as shown in Figure A-57 for asm.syntax
(assembly syntax).

Figure A-57: Getting help setting ‘e’ variables in radare2

Figure A-58 shows additional variable used to define the architecture prior to performing
analysis (aaa).
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Figure A-58: Additional examples of setting up ‘e’ variables in radare2

The MIPS architecture proved to be a challenge to analyze using these tools. Other tools are
available, like Ghidra or IDA, but weren’t attempted due to time constraints. Pulling the thread
on these binary analysis tools is left for future action.

Conclusions
During our analysis we uncovered several possible issues related to poor coding practice and
existing CVEs. Tools like binwalk, radare2, Cutter, and Ghidra were useful in performing this
analysis. The goal of this project was to uncover vulnerabilities in the device, and we feel we
have achieved this objective. Our stretch goal was to exploit these vulnerabilities, and
unfortunately we did not get that far. We leave that for further research.

The two possible vulnerabilities that stood out to us in the iCamera binary are the recvfrom() call
that reads ICMP packets over a raw socket, and the lack of full path specification for the
programs passed to the system() call. If the recvfrom() call is truly vulnerable then remote code
execution may be possible, and as a result a shell could be achieved on the Wyze Cam V3. If
the system() call was also truly vulnerable to PATH hijacking then we could theoretically
escalate our privileges to a root shell. Although it is possible that the other notable findings
(strcpy, strncpy, fread, sprintf) could lead to a vulnerability, we determined that it is unlikely
because even if they do use some of their parameters unsafely, they don’t appear to interact
with attacker controlled input.

Our firmware analysis showed that many of the vulnerable CVEs would either need direct
physical network access, access to the firmware within the supply chain, or inject utilities to take
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advantage of one of the many unpatched CVEs. The risk of such an attack was assessed as
low-to-medium.

Additional analysis can be performed based on the work described in this paper. Several items
are missing from the memory map (GPIO, peripherals…) that should be added by a future effort.
The Ingenic T31 SoC and the XBurst1 deserve closer scrutiny, as well as the role of the RISC-V
processor in the boot process. The u-boot process occurs very quickly, and the provided time to
interrupt the process was minimal. Attempts to interrupt the process failed. There may be other
approaches that have a higher likelihood of success. Firmadyne successfully emulates the
hardware, so the binary can be executed and analyzed on a laptop. We showed that we can
change the root password but we could not flash the repacked firmware to the hardware. This
should be relatively easy to investigate given more time than we have for this paper. The
information we provided to setup the amdgpu drivers and hashcat should enable the ability to
crack the linux password, maybe with a more powerful gpu or cheap cloud service. Wyze’s
passwords have been 8-10 characters in the past, making this a doable effort. Various firmware
visual analysis tools were used and results were compared. It was also found that the visual
analysis can aid in the process of firmware analysis. We also investigated if any new ports are
opened after updating the firmware using nmap.
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